search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Transition Year Maths 1. Number Systems


We use a base 10 system with 10 digits, they are : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. This is the decimal place-value system. 437 means 7 × 100 You are all familiar with this system.


(7) plus 3 × 101 (30) plus 4 × 102 (400).


The second system you are likely to encounter is the Roman Numeral system. It does not have place-value. The letters have fixed values and are ordered from largest to smallest. If a letter representing a smaller value appears before a larger one (e.g. IV), the smaller value is subtracted from the larger value (e.g. 5 – 1 = 4, IV).


I = 1; V = 5; X = 10; L = 50; C = 100; D = 500; M = 1000


Example 1: Write out the first 10 numbers in Roman Numerals. I, II, III, IV, V, VI, VII, VIII, IX, X Note: 4 is IV, one before five


Example 2: Write out the Roman Numerals for the following (a) 21 = XXI (b) 900 = CM (c) 1954 = MCMLIV (d) 3592 = MMMDXCII


It is difficult to do calculations using this system without converting back to our base 10 system first.


The third system you might encounter is the Base 2 or Binary System. It uses just two digits: 0 and 1. This is a place value number system.


The number 1101112 means (looking at the digits from right to left) 1 × 20 plus 1 × 21


(210) plus 1 × 22 (410) plus 0 × 23 (010) plus 1 × 24 (1610) plus 1 × 25 1 + 2 + 4 + 0 + 16 + 32 = 5510 answer: 1101112 = 5510


All digital information is carried using this system. The bases for all the technology in your mobile phones, computers and digital TVs is dependent on the binary system. The two digits can be 1, 0 or on, off, or +, – or 6 volts, 0 volts etc. Electronically it is easy to represent the binary system.


A subscript is used to identify the base number. The subscript (e.g. 10) is only used when discussing bases. 1410 is normally just written 14.


Example 3: Write the first 20 numbers in binary 110 =12


210 =102 310 =112 410 = 1002 510 = 1012 610 = 1102 710 = 1112


810 = 10002 910 = 10012 1010 = 10102 1110 = 10112 1210 = 11002 1310 = 11012 1410 = 11102


12


1510 = 11112 1610 = 100002 1710 = 100012 1810 = 100102 1910 = 100112 2010 = 101002


(110) (3210)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168