Transition Year Maths
Example 2: Write the following numbers without scientific notation: (a) 4·4 × 100 (b) 4·4 × 101 (c) 4·4 × 102 (d) 4·4 × 103 (e) 4·4 × 104 (f) 4·4 × 105
= . . . . . 4·4 (g) 4·4 × 100 = . . . . . . 44 (h) 4·4 × 10-1 = . . . . . 440 (i) 4·4 × 10-2 (j) 4·4 × 10-3
= . . . 4,400
= . . 44,000 (k) 4·4 × 10-4 = . 440,000 (l) 4·4 × 10-5
= . . . . . . . . . . 4·4 = . . . . . . . . . 0·44 = . . . . . . . . 0·044 = . . . . . . . 0·0044 = . . . . . . 0·00044 = . . . . . 0·000044
In this book calculations can be done with and without a calculator. However, a calculator makes some calculations very easy.
Adding: Add 3·2 × 103 and 1·4 × 104
Using the rule above, bring both numbers to the same power and add as normal. 3·2 × 103 +1·4 × 104
= or using a calculator
3 · 2 EXP 3 + 1 · 4 EXP 4 =
Multiplying: Multiply 3·2 × 103 ∴ 3·2 × 103 by 1·4 × 104
3·2 by 1·4 = 4·48 103
by 104 = 107 (add power) × 1·4 × 104 or using a calculator
3 · 2 EXP 3 × 1 · 4 EXP 4 =
Subtraction: Take 1·4 × 104
. . . . . . . . . . . . 44,800,000 = 4·48 × 107 . . . . . . . . . . . . 17,200 ·32 × 104
+1·4 × 104 1·72 × 104
. . . . . . . . . .
from 3·2 × 105
Using the rule above, bring both powers to same power and subtract as normal. 3·2 × 105 –1·4 × 104
= 3·2 × 105 = –0·14 × 105 3·06 × 105
or using a calculator
3 · 2 EXP 5 – 1 · 4 EXP 4 =
. . . . . . . . . . . . 306,000 (move decimal once to left, power goes up 1)
8
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168