ANSWERS
(d) (x – 1) (x + 1) (x - 3) (x + 2) (e) (x – 2) (x + 2) (x + 3) (f) (x – 3) (x + 3) (x + 1)
9. –2, –0.3, 2.3, (x + 2) (x + 0.3) (x –2.3) 10. x2
+ y2 = 16; x2 (b) x2
+ y2 + y2
+ y2
11. (0, 0), 6; (0, 0), ; (0, 0), 12. (a) x2
= 36; x2 30
–2x –2y + 1 = 0 –30x + 200 = 0
+ y2 = 2
1 3
13. (0, –1), 2; (–1, –2), 2; (–1, –1), ; 2
4. Formulas 1. 9 x 1016
5. 6.
a vu = t
−
x v= u x =
sw ,
w + wy
x bc d ea fa a
,
x de c
= +100 2
2 , x = 10 y
= ++ ––23 4 5 5
a
x ba= – 2
7. 31/304, 24/297, 38/311, 16/289, –17/256. Northern hemisphere summer.
8. €689·47, €689·47 9. 2356cm3 10. 3.26cm3
, 633cm3 , 6.51cm3
11. 53.05cm, 65.77cm 12.
r 13.
= s 4π
h sr r
= –2 4
π π
5. Co-ordinate geometry 1. Star 2. Star 3. Star 4. L I N E 8.
2
8. Algebra 1. 6, –3, 9, 0, 8, 21, 42, 61, 162, 1
2. 3.
a c
2 2
1, 2, 2a, 4. 7a + 3a2 2a , a 1 , 6 + 5c, 2a + b + c
5. 3c 6. x + y = 25; 5x + 8y = 167; 3x –2y = 5; 28x = 22y; 11 cent; 14 cent
(i) Reversed (ii) Reversed and inverted
7. Pears 8. 4, 1 9. 96 @ €1 54 @ €2 10. 2, –3, 5 11. No, because the first two equations are effectively the same, one is twice the other.
12. 2, 3, 4 163 6. Pythagoras’ Theorem
1. 20 – divisors 10, 5, 4, 2, 1; sum is 22 ⇒excessive 21 – divisors 7, 3, 1; sum is 11 ⇒defective 22 – etc.
3. (d) (h) (m) (r) 5.
,, , , 20 2 6 8 180 3·1 ,, , ,
6. 15, 54, 7·2, 5·4, 9·6 7.
2 18181818
2. 6,428,571,429 days ~ 17 million years 3. 9 × 1013 4. 9 × 1025
J J
J
1. €167 €333 €500 2. 3.
7. Ratio and Fibonacci 4 : 5 : 11
1 : 12
4. (a) 24 : 35 (b) 24 : 315 (c) 4 : 21 (d) 18 : 5 (e) 21 : 4 (f) 21 : 2
6. 256 7. 360° – 137.5° = 222.5°
360 222 5 1 618
· = ·
Causes irregular patterns which is less likely to split and is therefore stronger.
,,,, 1 18 16 17 24 7 12 ,
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168