This page contains a Flash digital edition of a book.
Plasmonic Gratings


hotspots; (2) the high density of hotspots can simultaneously excite fluorescent molecules over the entire imaging plane; and (3) the high SNR of emission from fl uorophores excited by hotspots enables much brighter images with fi ner resolution using a simple epifluorescence microscope than with much more complicated super-resolution systems. Ultimately, GLAD gratings represent enormous potential as an easy-to-use platform that enhances the image resolution to sub-diff raction levels and enhances the fl uorescence emission intensity several orders of magnitude above glass slides.


Conclusion


The GLAD grating platform developed in this article enables users to beat the diff raction limit and obtain an image resolution of ~210 nm before processing and a resolution of ~65 nm after point-spread function deconvolution. We also obtained better fl uorescent signal detection over a wide concentration range of fl uorophores because of the high SNR of the single molecule images on the GLAD grating (SNR ~ 28). T e ease of use and resolution enhancements from the GLAD grating platform makes it the ideal choice for numerous applications in single-molecule fluorescence imaging.


Acknowledgements


Funding for this work was provided by a grant from the National Science Foundation (Award No. ECCS-1102070).


References [1] CG Galbraith and JA Galbraith , J Cell Sci 124 ( 2011 ) 1607 – 11 . [2] DS Kim et al ., Nano Lett 9 ( 2009 ) 3619 – 25 . [3] L Schermelleh et al ., J Cell Biol 190 ( 2010 ) 165 – 75 . [4] G Shtengel et al ., Proc Natl Acad Sci USA 106 ( 2009 ) 3125 – 30 .


[5] Y Wang et al ., Nano Lett 13 ( 2013 ) 5233 – 41 . [6] BYTD Harris et al ., T. B. Laboratories and I. A. Room, 1994. [7] Z Liu et al ., Nano Lett 7 ( 2007 ) 403 – 08 . [8] Y Fu and X Zhou , Plasmonics 5 ( 2010 ) 287 – 310 . [9] Z Xie et al ., Plasmonics 6 ( 2011 ) 565 – 80 .


[10] X Zhang and Z Liu , Nat Mater 7 ( 2008 ) 435 – 41 . [11] Y Xiong et al ., Nano Lett 7 ( 2007 ) 3360 – 65 . [12] S. Kawata et al ., Nat Photonics 3 ( 2009 ) 388 – 94 . [13] JB Pendry , Phys Rev Lett 85 ( 2000 ) 3966 –6 9 . [14] ST Hess et al ., “ Ultrahigh Resolution Imaging of Biomolecules by Fluorescence Photoactivation Localization Microscopy ” in Micro and Nano Technologies in Bioanalysis: Methods in Molecular Biology, series vol . 5 44, eds. RS Foote and JW Lee, Springer , Cliſt on, NJ , 2009 , p. 544 , 483 – 522 .


[15] E Betzig et al ., Science 313 ( 2006 ) 1642 – 45 . [16] MJ Rust et al ., Nat Methods 3 ( 2006 ) 793 – 95 . [17] M Bates et al ., Cold Spring Harb Protoc 8 ( 2013 ) 498 – 520 . [18] Y Wang et al ., Nano Lett 8 ( 2008 ) 3041 – 45 . [19] B Chen et al ., Nanoscale 8 ( 2016 ) 12189 – 201 . [20] B Chen et al ., Nanobiomedicine 2 ( 2015 ) 1 . [21] S Basuray et al ., J Nanomedicine Nanotechnol 6 ( 2015 ) 1 . [22] K Bhatnagar et al ., Nanotechnology 23 ( 2012 ) 495201 . [23] CM Darr et al ., Sens Actuators B Chem 202 ( 2014 ) 1088 – 96 . [24] US 20140226207 A1, 2014. [25] B Chen et al ., ECS Trans 61 ( 2014 ) 69 – 82 . [26] X Michalet and S Weiss , Biophysics 3 ( 2002 ) 619 – 44 . [27] T Tanii et al ., Phys Rev E 88 ( 2013 ) 012727 . [28] AJ Wood et al ., RSC Adv 5 ( 2015 ) 78534 – 44 . [29] S Kawata et al ., Nat Photonics 3 ( 2009 ) 388 – 94 . [30] P Dedecker et al ., Opt Express 15 ( 2007 ) 3372 . [31] R Roy et al ., Nat Methods 5 ( 2008 ) 507 – 16 . [32] Y Chen et al ., Mol Biol Cell 25 ( 2014 ) 3630 – 42 . [33] E Tolstik et al ., T e Optics Encyclopedia , Wiley, Hoboken, NJ, 2015, 1–31.


[34] F Huang et al ., Biomed Opt Express 2 ( 2011 ) 1377 . [35] H Lee et al ., Solid State Commun 146 ( 2008 ) 202 – 07 . [36] S Durant et al ., J Opt Soc Am B 23 ( 2006 ) 2383 – 92 . [37] JR Lakowicz et al ., Biochem Biophys Res Commun 307 ( 2003 ) 435 – 39 .


2017 January • www.microscopy-today.com


47


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68