This page contains a Flash digital edition of a book.
[1–2 mm] to diffuser holes with funnel or fan-shape geometry that can vary from a simple cone to an elongated rectangle,” said Pfluger. “Te purpose of diffuser holes is to control the airflow and effective cooling of the inner and outer surfaces of the hollow cast engine detail. Oſten the final through-hole of a diffuser isn’t centered to the outer funnel geometry and is offset to one side to direct or change air flow.” Design of the EDBV3 is aimed at production EDM hole


drilling. “To facilitate the processing of complex 3D parts, the machine is configured with an integrated two-axis rotary table that is used for positioning of the workpiece, and the remaining four machine axes are used to position the elec- trode and die guide to the proper machining location. Typi- cally, we use a palletized tooling mechanism from EROWA or System 3R to hold and chuck the part into and out of the machine,” said Pfluger. Critical process issues address machining speed as well as


breakthrough detection. “As you drill through the outer skin and you break into a hollow cavity, you have to avoid machining the interior back wall of that cavity. Tat’s called back striking. If an adjacent cavity feature is machined, it will change the air flow and affect cooling effectiveness. Special machine genera- tor circuitry has been developed that can detect breakthough within one second or 0.040" [1 mm],” said Pfluger. EDM drilling on the EDBV3 is performed fully submerged


under water for higher part quality, improved stability and up to 10 times faster processing speed compared with conven- tional technologies. To improve productivity, the EDBV3 uses a single-electrode processing approach, which avoids the high cost of custom multi-electrode holders and standardizes the tool holders with a flexible and cost-efficient system. For untended burning of varying cooling hole diameters,


the EDBV3 features a combined automatic tool change (ATC) and automatic guide change (AGC) system. Te patented elec- trode toolholders combine the electrode holder and die guide together into a common assembly, providing ATC and AGC exchanges in 30 seconds. In addition, changing to a different brass electrode diameter is simplified.


Machining Choices for Other Components Capacity for machining structural titanium and related


components has also expanded the investment in advanced machining technology. Aerospace Dynamics International Inc. (Valencia, CA), increased its titanium machining capac- ity approximately 40% to support Airbus A350 and Boeing 787 programs by acquiring eight five-spindle, five-axis MAG XTi profilers from MAG IAS LLC (Erlanger, KY) in a $36 million machinery purchase. Te XTi profilers join ADI’s extensive portfolio of MAG machines including two three- axis XTi profilers and two MAG U5 portal mills and two MC 1600 boring mills acquired in a 2011 plant expansion. Te 40 spindles of the five-axis XTi profilers are carried on eight


Mazak’s Integrex i-630 multitasking machining center shown with an aircraft engine case.


For machining both titanium and aluminum structural


components, Valent Aerostructures (Kansas City, MO) re- cently acquired Vortex 1060V/8 simultaneous five-axis vertical machining centers from Mazak Corp. (Florence, KY). Valent is a supplier to major aircraſt builders like Boeing, Spirit Aero- systems, Lockheed Martin and Gulfstream. Valent’s strategy is to create two separate fully automated machining lines using Mazak’s Palletech system. Both machining lines will allow un- tended operation and are modular so that Valent will be able to easily and cost-effectively expand as more machines are added to both lines. Te titanium machining line features two Vortex 1060V/8 machines with hard metal machining pack- ages and a two-level system with 24 pallets and a load/unload station. Te high-speed machining line will incorporate four Vortex 1060V/8 machines and a Palletech system. “Aerospace manufacturers need high repeatability and


accuracy when machining large, heavy, challenging aero- space parts,” said Dale Hedberg, Feeler product manager, Methods Machine Tools Inc. (Sudbury, MA). Manufacturers are increasingly relying on vertical turning lathes to accom- modate their larger and heavier parts, said Hedberg. “Te new Feeler FVT-600 is equipped with heavy-duty, roller-type linear guideways, resulting in high rigidity when making heavy cuts.” Te Feeler vertical turning lathe offers a high-precision and


high-rigidity spindle which is supported by two double-row cylindrical roller bearings and duplex angular thrust bearings. Tis enables the lathe to endure heavy cutting in both radial and axial directions, resulting in high accuracy during long cutting cycles. Te FVT-600 design permits coolant to flush chips to an extra-wide conveyer where the chips are immedi- ately evacuated. ✈


Aerospace & Defense Manufacturing 2013 129


individually controlled gantries that span 6 m with a Z-axis depth of 711 mm, providing a work envelope between each pair of rails of 1300 m2 for roughing and finishing the largest titanium workpieces.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328