This page contains a Flash digital edition of a book.
TechView Precision ECM Technology:


Soft Solution for Hard Metal


Not only do innovative technologies and flexible production lines have to ensure a noticeably greater output, but produc- tion planners also must focus constantly on improving component quality. Tis consequently leads to ever greater de- mands on the innovators in the machine tool engineering industry to develop new and more efficient processes. Developments in the aerospace,


automotive, medical and other indus- tries pose great challenges, with ever more demanding materials being used; while technological advances frequently lead to the creation of new, particularly complex component geometries. Te new processes required to manufacture them must be particularly efficient and guarantee absolute process integrity. Tat the production planners work-


ing against this kind of background are looking for innovative machining processes is not surprising. Te question most commonly asked is: Are there new technologies to be found in the machine tool engineering sector that can be used with good effect to deal with the steadily increasing demands from the production sites? Our answer is electro-chemical machining (ECM). With the process we term PECM (the “P” stands for “preci- sion”), our specialists have developed the process further, focusing on particularly demanding tasks in the machining of complex components. For the machining of high-tensile alloys, for instance, many users have so far relied on high-speed milling and EDM. But doing this has its disadvantages. For instance, tool wear and tear is substantial and the traditional process generates high temperatures that have a negative impact on the material. It


is those disadvantages that in PECM play no role at all or only a very minor one. In fact, it is the particular strongpoint of this process. Te advantage of this process is that


high-tensile “superalloys” and other demanding materials can be machined with almost no tool wear. And the sur- face finishes produced are top quality— no burring and no structural damage to the material. How is this possible? First, the ECM process acts very “soſtly” in the removal of material, with the workpiece acting as the positive anode and the tool as the negative cathode. Between the two surfaces flows an electrolyte solution that peels away metal ions from the workpiece. As the shape of the tool cathode represents the desired shape of the workpiece, material is only removed at those points where it needs to be removed. Tis leads to the contactless and thermally unaffected creation of contours, annular channels, grooves or chambers—all of the highest precision.


High-tensile “superalloys” and other demanding materials can be machined with almost no tool wear.


Tis process allows us to generate the


most delicate, filigreed components. We have intentionally developed ECM into PECM to ensure that we can produce images of even greater accuracy on smaller and smaller components and, at the same time, perfect the surface finish. Central to this interplay are two things: the working gap, in which the electro- lyte solution passes the workpiece, plus the direction of the flow itself. On the


Richard Keller


Director of Technical Sales EMAG ECM GmbH Gaildorf, Germany


one side, you have the gap, which—in PECM—is particularly narrow, and on the other, the solution that literally pulses through the gap. Te electrolyte solution’s feed rate is overlaid with a mechanical oscillation. Tis ensures a particularly efficient and even more ac- curate removal of the material. Where the advantages of using PECM


lie for the various branches of industry and the user is best shown by looking at the example of a turbocharger. With the help of the electrochemical pro- cess, many components in high-tensile materials—and especially those in the turbocharger field—are ideal to machine using a much shorter and more efficient process chain. Some processes that were part of the traditional machining cycle, such as the deburring operation that followed the milling process, are no longer required. PECM is a process that does not leave burrs. With very little tool wear involved, machine downtimes are minimal when compared to mill- ing, where the tools need to be changed regularly. Te overall process is also much more stable and less error-prone. And there is something else of great importance in PECM: the surface finish. We achieve values of, for instance, RZ


0.3


µm (depending on the material). Tat is a surprisingly good roughness value. I am convinced that this process


can offer the industry exceptional added value. The process scores highly in the areas of perfect surface finishes, short resetting times and minimal tool wear—the kinds of advantages that will pay off for suppliers in the competitive and time-sensitive arena of component machining. ✈


Aerospace & Defense Manufacturing 2013 59


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328