This page contains a Flash digital edition of a book.
tion,” he said. “Tis will become a smart system.” Somewhat like laser trackers, the digital photogrammetry portion of the system requires coded targets placed precisely in the scene. Tey are moving on to the Phase II portion of an SBIR


grant. Te Phase I requirement called for a measuring accu- racy of ± 0.002" (50 µm). “We expect to hit 0.001" [0.025 mm] and we measure Key Characteristics of features—surfaces, holes, or chamfers—within the limit of what the laser radar can provide,” said Butkiewicz. “We provide out the character- istics of that hole within the global reference frame, not just a cloud of points that need to be analyzed and assessed.”


White-Light Systems Another wide-area scanning technology is so-called ‘white-


light metrology.’ Noted for simplicity and accuracy, it is also being used in metrology-assisted manufacturing. Noted for capturing millions of points at a time, structured white-light systems project shadows of lines from a 2D lens onto a 3D surface. Tey then apply sophisticated mathematics to deter- mine point clouds of measurements. Lockheed Martin (Fort Worth, TX) is looking into using


these systems to help in critical but mundane tasks. “Our pri- mary goal is to investigate advanced noncontact measurement technologies which could replace current manual gages which are typically imprecise and slow. Te ability to take repeatable measurements independent of an operator is critical in order to avoid the need for a fleet of trained metrologists to inspect the aircraſt,” said Chris Barrow of Lockheed Martin. He notes that even though individual inspection with a hand gage may take less than five seconds, with 45,000 fasteners on the outer surfaces of the F-35, that is a lot of inspection. It is easy for an operator to miss a problem, and the cost of rework is expo- nentially more expensive later on. “Structured light scanners offer the capability to capture larger areas of data in a single measurement as well as the flexibility to measure complicated parts and assemblies that would not be feasible otherwise,” he said. He reports that Lockheed Martin is using the Cognitens WLS400M blue-light scanner from Hexagon in a system that verifies hinge location in F-35 doors and openings. Tey are using the data to determine the source of alignment defects. “Although the Cognitens system is currently being used manually, the feasibility of an automated door-inspection cell is being investigated,” he said Another such system is the Advanced Topometric Sensor


(ATOS) provided by Gesellschaſt für Optische Messtechnik (GOM). System integrator ShapeFidelity (Huntsville, AL) is using these systems to effect part-to-part mating through robotic guidance in a variety of applications. “We are using the ATOS-guided systems to replace hard tooling for place- ment,” explained Rob Black, senior applications engineer for ShapeFidelity. Tey call their system Digital Tooling. “We have delivered dozens of these systems, in commercial and defense


aircraſt applications, including aircraſt, spacecraſt, and rocket applications,” he said. To illustrate the utility of the concept, he cites a NASA


example using their Digital Tooling to mate the adapter fitting between the Orion space capsule and the Delta IV rocket for an upcoming test launch. Te Orion diameter is 18' (5.5 m) while the Delta IV rocket is 16' (4.9 m), requiring an inverted cone to make the rocket usable. “We are using the ATOS system in lieu of hard tooling by scanning the parts in process, aſter each manufacturing step, and using that data to draw the toolpath definition for the robotic weld tools,” he explained. “We saved them at least a million dollars by eliminating the need for hard tooling, not to mention that this was a test flight and only one part was needed.” Another


A Robotic MMDx scanner mounted to a robot replaces the hand-held version of the sensor.


example is a Digital Tool system that mates the joint between the hydrogen and oxygen dome tanks on the Ares rocket’s upper stage. He notes the print fit-up tolerance for that was 0.010" (0.25 mm), requiring a measuring accuracy of about 0.005" (0.13 mm) over an 18' diameter. Te ATOS scans the 18' diameter dome in about 45 minutes. “We have delivered Digital Tooling now in dozens of applications, from building one-of-a-kind to seeing it used to build hundreds of parts per month,” stated Black. ✈


Aerospace & Defense Manufacturing 2013 109


Photo courtesy Nikon Metrology


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328