This page contains a Flash digital edition of a book.
Aerospace Materials “Tese new programs involve all-new components, new


designs and new strategies for fuel efficiencies in operation,” said Scott Walker, president, Mitsui Seiki (USA) Inc. (Franklin Lakes, NJ). “Te Pratt & Whitney gear fan strategy is designed to use high-nickel base alloys for hot stage components and make the engine diameter smaller, make it burn hotter, and drive the fan with a planetary gear system that’s more efficient at slower speeds. Te LEAP strategy is to make the hot and cold stage components smaller in diameter and run them hot- ter and faster, using a totally new proprietary blade design."


Complex Airfoil Designs “All the engine manufacturers have run their hot gas path


temperature to well above 2000° F [1093° C],” said Larry March- and, vice president, United Grinding Technologies (Miamis- burg, OH). “Ceramics are used for coatings and base material and are difficult to machine, as are alloys with exotic elements like chrome, tungsten and nickel that are used for the increas- ingly complex investment castings for blade vanes and shrouds. In addition, castings feature complex three-dimensional airfoil design making them that much harder to machine. “Tere has been a shiſt in what our aerospace custom-


ers expect from us,” said Marchand. “Te mix of turnkeys required has shiſted from 25% 10 years ago to 75% today. Our customers want us to design it, build it, debug it, troubleshoot, and run off systems, activities that would have been done internally in the past.”


cal officer, DMG / Mori Seiki USA (Hoffman Estates, IL). “Te newest blisk and blade designs can’t be machined with older four-axis machines. All of the new designs require five-axis machining capability and processes that can handle difficult-to-machine materials.” To meet these uniquely challenging machining require-


ments, DMG / Mori Seiki has developed new processes for machining heat-resistant materials like titanium aluminide, sintered nickel-based alloys, and carbon fiber for structural components for its machining center technology. “Pinch mill- ing for machining the larger stage fan blades that are designed for higher by-pass ratios overcomes the tendency of the blades to deform under more cutting force,” said Hyatt. “Pinch milling is available on any of our mill-turn ma-


chines, preferably with the Siemens 840D control as well as the DMG machining centers. Te zero-chip process is a tech- nique we use to vacuum dust and swarf through the tool and through the spindle away from the work zone when machin- ing carbon fiber. Zero-chip machining is available on NMV machines and the NVX machines that are currently being used for production of some of the carbon-fiber components in the wing box for the 787,” said Hyatt. Special machining packages for heavy cutting of difficult-


to-machine alloys have also been developed by DMG Mori Seiki. “For example, new designs for integral bladed rotors [IBR] are being used more frequently in new stages of the en- gines. We’re seeing tandem blisks for IBRs, where two or three


“There’s a definite trend toward flexibility in engine machining, requiring quick response to engineering changes.”


“Tere’s a definite trend toward flexibility in engine ma-


chining, requiring quick response to engineering changes. We use the term multitasking to describe this flexibility when we talk about our toolchanging grinding centers like the Magerle MFP 50 grinding center. It’s a five-axis toolchanging machine which can do milling, turning, and drilling, as well as grind- ing. If you have a part with a lot of milling, obviously it’s going to be cheaper to mill it, because they’re mass produced. But if you have a part that is 80% grinding that has a couple of holes that have to be drilled, which is very common with turbine vanes, or slots and keyways, the multitasking grinding center is a good way to eliminate the need for secondary milling and fixturing,” said Marchand.


Matching Processes to New Materials “Te machining solutions for higher efficiency engines


that are designed to achieve higher by-pass ratios and higher combustion temperatures must deal with more exotic alloys and more exotic cooling solutions in the turbine stage,” said Greg Hyatt, vice president and chief techni-


128 Aerospace & Defense Manufacturing 2013


stages are machined from a single piece of material. For those applications, direct-drive of the rotary axis on the NMV and Mono Block machines is faster, more accurate with a longer service life than gear-driven rotary tables,” said Hyatt.


Critical Cooling Holes Get at Production Speed For machining critical cooling air holes and shaped dif-


fuser holes in blade and vane segments, Makino (Mason, OH) has introduced its new EDBV3 (electrical discharge blade and vane) fast hole drill EDM. “Te EDBV3 is designed to provide aerospace manufacturers with the speed, flexibility and reli- ability to produce a wide range of hole shapes and sizes within a single setup, reducing required tool variety and overall cycle times.” said Brian Pfluger, Makino EDM product line manager. Forced air cooling, special coatings and higher heat-resis-


tant metals are increasingly being used to overcome the effects of increased aero-engine temperatures that are beyond the melting pointt of the base materials. “Holes range from typical straight through-hole sizes between 0.020–0.030" [0.5–0.76 mm] diameter with relatively shallow depths of 0.040–0.080"


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328