search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Embedded Technology


The missing link in Industry 4.0’s connectivity chain


Industry 4.0 has been well and truly explosive for the last decade, and its growth doesn’t seem to be stopping. The Global System for Mobile Communication Association (GSMA) predicts that, by 2025, there will be more than 25 billion Internet of Things (IoT) connections globally. While IoT has transformed industry, there are still challenges when it comes to streamlining deployment. Here, Amr Houssein, managing director of Mobilise, explains how embedded SIMs or eSIMs complete IoT connectivity


I


n short, the industrial IoT (IIoT) enables machine-to-machine (M2M) communication, making manufacturing facilities smart and digitalised. By using sensors to capture factory floor data, manufacturers gain a comprehensive overview of their facility to optimise processes, improve machine performance, reduce waste and energy consumption, and result in less unexpected downtime. But what is the technology behind getting connected?


Getting manufacturers connected Connecting IoT devices over a mobile network is referred to as the cellular IoT. Using existing mobile networks removes the need for a separate, dedicated infrastructure. Instead, a range of networks can be used — whether that’s 3G, 4G, 5G, or IoT-specific networks.


LTE-M and NB-IoT are networks designed specifically for IoT connections. While LTE- M offers a lower price point and voice and SMS support, NB-IoT offers low power, low data usage for long range and reliability. Whichever network is used, connecting devices to the cellular IoT through the traditional SIM cards presents several challenges for manufacturers.


Deployment difficulties An IoT SIM card has traditionally been responsible for connecting a device to the network. But it doesn’t come without its challenges.


IoT SIM cards typically only allow a device to connect to one carrier network. When deploying devices globally across multiple networks, or working with devices that are involved in the supply chain or logistics that move across the world, this creates a logistical nightmare. Manufacturers must source and distribute physical SIMs for a local network for each device.


As SIM cards need to be removable 12 July/August 2022


for maintenance or carrier changes, IoT devices cannot be sealed, meaning that harsh operating conditions are more likely to damage a device. There are also the added concerns that having a removable element exposes IoT devices to risks of service theft.


eSIMs are the future While IoT SIM cards do the job, these challenges are hard to ignore when there’s a solution on hand. eSIMs, or embedded SIMs, are a digital alternative to physical SIMs, connecting devices to a network over the air. Initially adopted for wearable devices and connected cars, eSIMs are also now a key component of the IIoT.


Unlike physical SIM cards, eSIMs download network credentials onto a chip on the printed circuit board of an IoT device through over-the-air provisioning. Eliminating the physical component of a


Components in Electronics


SIM makes the entire network onboarding process remote, which has a wealth of benefits for manufacturers.


eSIMs eliminate the problems associated with IoT SIM cards — the device’s network is determined after the production, shipment and deployment of an IoT device. Manufacturers can easily swap connectivity providers as and when required for ultimate flexibility depending on device location or subscription cost. Provisioning network credentials over the air means the eSIMs are connected and maintained remotely. There’s no need to physically handle a device to make changes to its connectivity, making devices more durable and less prone to environmental damage. In terms of security, an eSIM’s location on a small chip on the circuit board means it’s not removable. Being physically soldered to the device eliminates risks of physical theft of the SIM, as it’s hard to


identify and impossible to remove. In this way, IoT devices can be deployed without any local human control of the connectivity — all responsibility lies with the manufacturer’s service provider (SPs). Mobilise’s HERO platform supplies SPs with a cloud based eSIM orchestration layer, to enable eSIM provisioning, management, enterprise billing and CRM systems. This means SPs take responsibility for managing subscriptions, taking the pain out of cellular connectivity for manufacturing users. While IIoT is nothing new for


manufacturers, making it more streamlined, convenient and digital is key to its continued success. Adopting eSIM technology alleviates some of the pain points manufacturers are experiencing, making operations slicker and opening a world of opportunity for more efficient processes.


mobiliseglobal.com/ www.cieonline.co.uk


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82