Medical Electronics
On the cutting edge of hearing aid research
Engineers at Knowles bring the hearing aid industry together to fight feedback with multiphysics simulation. Gary Dagastine explains
I
n the United States, nearly 20 per cent of the population is reportedly hearing impaired – although that figure could be higher because many people are reluctant to admit they have a hearing problem. Those who are treated rely on miniature and discreet hearing aid devices to improve their hearing, hence their quality of life. Significant R&D effort is required to bring a hearing instrument from a prototype stage to a marketable hearing aid device. Engineers face daily technical challenges in hearing aid design. Feedback is a major issue that leads to high-pitched squealing or whistling, and limits the amount of gain the aid can provide. “Feedback usually occurs when a hearing aid’s microphone picks up sound or vibration inadvertently diverted from what’s being channelled into the ear canal and sends it back through the amplifier, creating undesirable oscillations,” explains Brenno Varanda, a senior electroacoustic engineer at Knowles Corp. in Itasca, IL.
“For many of Knowles’ customers, designing a new hearing aid is a costly, time-intensive process that could take anywhere from two to six years to complete,” Varanda explains. Accurate modelling helps designers select speakers, refine vibration isolation mounts, and package components to reduce the amount of speaker energy that is fed back to the microphone. The industry is in dire need of simple transducer models that will expedite that process, and provide more effective options to consumers. Complete models of speakers and microphones are quite complex, and incorporate many factors that are not necessary for feedback control. As a global leader and market supplier of hearing aid transducers, intelligent audio, and specialty acoustic components Knowles
took a multilateral initiative to develop transducer vibroacoustic models that are easy to implement and compatible with its hearing health customers. The models are intended to help hearing aid designs graduate from a prototype stage to a final product in a more efficient manner without having to sacrifice accuracy. When designing hearing aids two major conflicting requirements must be accounted for by engineers. They must be compact and unobtrusive, yet still capable of providing a powerful sound output to overcome the user’s hearing loss. The user is far more likely to wear a hearing aid if they are discreet and lightweight. This makes solving the feedback issue more challenging.
The “black box” model The receiver’s only function is to convert the amplified voltage signal from the microphone into sound. While the construction appears simple, the process is rather complex. The electrical signal is first converted to a magnetic signal, then to a mechanical signal, and finally into an acoustic signal. Each of these steps has its own frequency-dependent characteristics. Understanding the combined effects of all the internal components is vital to the ability of effectively designing receivers for all different hearing aid platforms. Engineers at Knowles have been using complex circuit-equivalents to model all of their internal electrical-magnetic-mechanical- acoustic effects since the 1960s. Accurately modelling the full complexity
of a receiver requires a dauntingly large and complex multi-physics finite element model, making it impractical for fast and efficient hearing aid design. This issue was
overcome when Dr. Daniel Warren, a hearing health industry expert in receiver and microphone research, introduced a 'black box' model in 2013. The design uses a minimum amount of simple circuit elements to capture the essential electroacoustic transfer function between voltage and output sound pressure level for balanced armature receivers, while leaving out factors that are unimportant to feedback control.
A key step to simplifying the model was
when Warren and Varanda demonstrated that the simplified electroacoustic circuit could be converted into a powerful vibroacoustic model while adding very little complexity to the model. “The conversion is achieved by probing a section of the 'black box' circuit where the voltage across inductors is directly proportional to the internal mechanical forces responsible for structural vibration,” Warren explains. The “black box” and vibroacoustic models needed to be tested and validated against realistic acoustic and mechanical attachments to the receiver before designers could start using them for product designs. A worldwide collaboration between Knowles and its hearing health customers got started in 2014 to validate the models using the COMSOL Multiphysics software and industry standard tests.
Working together on validation To validate the models, engineers needed to measure the acoustic output and vibration forces at the same time, using a structure that could be easily modelled in FEA. Like common hearing aid tests, this test involved connecting a receiver to a short section of tubing leading to an enclosed cavity with a two cubic centimetre volume, which is a standardised ear canal acoustic load. The acoustic pressure inside the cavity is measured with a laboratory-grade microphone. To help verify the robustness of the model, the receiver was also measured using a complex tubing assembly similar to a BTE
hearing instrument. The long tubing in this design varies in diameter, and is long enough to support multiple acoustic resonances. At the same time the acoustic output was being measured, the receiver’s structural motion was captured by a laser vibrometer. Both translational and rotational motion were measured by observing the motion at multiple points on the surface of the receiver housing. Warren and Varanda collaborated with several Knowles customers to perform the measurements described above. With the help of COMSOL Multiphysics, they were able to implement the simplified vibroacoustic circuit model into a simulated replica of the test setup described above. The simulation couples the mechanical interaction between the motion of the receiver and the silicone tubing attachment, thermoviscous losses within the various tubing cross sections, and acoustic pressure loads inside the cavity and tubing with the internal electro-magnetic-acoustic effects in the “black box” receiver model. The COMSOL model revealed the dependence of the output pressure and mechanical forces on the applied voltage, frequency, and material properties.
Spreading the knowledge Knowles shares their model to empower engineers at other hearing aid companies to solve their own system feedback troubles. With a complete representation of the acoustic, mechanical, and electromagnetic behaviour inside the hardware, designers are well set up to virtually optimise their products. “COMSOL is one of the few modelling and simulation tools that can easily couple the lumped 'black box' receiver circuit with acoustics and solid mechanics,” says Varanda. “Until now, verifying and optimising hearing aid designs has been as much art as science. We will be very happy to see new hearing instruments designs that have benefitted from these models.”
www.knowlescapacitors.com
www.cieonline.co.uk
Components in Electronics
December 2017/January 2018 31
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62