search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
| 37


50-75% paper sludge and 25-50% of cardboard waste as the raw material base. “We needed to close the loop on the cellulose life cycle and start seeing this type of waste for what it really is: an untapped resource,” said HONEXT chairman and co-founder Pere Merino.


This fascinating research and development project has identified and brought fresh technologies and thinking to the forefront. Selected and specific enzymes have been developed and these are then put into the raw material mix to trigger chemical reactions and to improve fibre binding capability, without the use of any adhesives.


An enzyme is any protein that acts as a catalyst, increasing the rate at which a chemical reaction occurs. The human body probably contains about 10,000 different enzymes. At body temperature, very few biochemical reactions proceed at a significant rate without the presence of an enzyme. Whilst enzymes do not control the direction of the reaction, they increase the rates of forward and reverse actions proportionately. Enzymes work by binding molecules so that they are held in a particular geometric configuration that allows the reaction to occur. Each enzyme catalyses a specific type of chemical reaction between a few closely related compounds, which are then called substrates of the enzyme.


As a result of many lab trials and experiments over these years and by developing these techniques, HONEXT has now used the technology breakthrough to mix percentages of waste paper sludge and OCC together and in a closed loop system, to heat and then press out all remaining water into a micro-fibrolised cellulose-based panel.


PATH TO COMMERCIALITY Taking a research project such as this into a commercial proposition is always a challenge and this is the journey that HONEXT is now on. A proof-of-concept pilot plant has been invested in and constructed near Barcelona that is able to produce commercial 2440x1220mm panels in a variety of thicknesses and densities, with a typical panel being +/- 550kg/m3


.


The plant was designed to have zero environmental impact: gas and electricity coming from waste digestion. Water is permanently reused, in a closed loop system. Bringing a feasible solution to the pulp and paper industry’s waste problem and turning this material into a commercially viable product clearly has tremendous potential. It is a breakthrough, and the reality is that we can see here a process of upgrading and up- cycling of paper waste, to recycle and reuse. An example of exactly what society demands in the 21st century. With new technology, low capital expenditure per cubic metre and with


relatively simple engineering, this concept has the potential to be widely accepted across the pulp and paper industry and to be commercialised internationally. The bio-tech process and the up-cycling of the fibres is non reversible and clearly has the potential to be a core material for many other innovations. Moving away from linear production is the direction of travel, as we all become more accepting of and wish to see, the circular economy model expanded: waste collection – material generation – healthy environments – end of cycle and recycle. Being resin free, and with no CO2


from the process, the panels produced as a result have the scope to be widely acclaimed by that part of the market looking for environmentally friendly products and the necessary assessments for ‘cradle to cradle’ certification and other regulatory approvals internationally are now being pursued actively. Non-toxic, long lasting and sustainable is an often-quoted requirement from customers.


As Environmental Social Governance (ESG) standards become ever more prevalent across the globe, the appeal of this type of material is clear to see. The ESG criteria bring a set of standards for a company’s operations that socially conscious investors can use to screen potential investments. The environmental criteria considers how a company performs as a steward of nature. ESG refers to the three central factors in measuring the sustainability and societal impact of an investment in a company or business. These criteria help to better determine the future financial performance of companies (return and risk).


So, in short and as a result, the leading- edge technology and the new product that is emerging is already being noticed by early adopters. Renowned international companies and retailers are already using HONEXT as a dry lining material for specific offices and stores. Undoubtedly more will follow. The process as described and the commercialisation of the concept through proprietary and process partnerships, implemented through multiple plants in strategically spread locations, can potentially make a large and valuable contribution to solving the waste and landfill issue for


the pulp and paper industry. The vision is a collaboration with paper mills and waste management facilities to create a globally distributed production network that transforms waste where it is generated. Apart from the production and proof of concept dynamics and evolution, the marketing and sales team at HONEXT is now developing relationships in various countries, with key wood-based panel distribution partners so that the construction sector and various target markets can see the product for themselves.


emissions Then, with selective and appropriate test


marketing, linked to product performance, all performance aspects can be seriously reviewed and reflected on. Early experiences so far are extremely positive.


SUSTAINABLE SHORTLIST Also to note and following an article by Dezeen, which has added influential credibility, the company has recently been able to announce that HONEXT has made it to this year’s Dezeen Awards Sustainable Design Shortlist.


They can share this first selection with other world-leading brands such as Tarkett and Really by Kvadrat, as well as with materials research pioneers including Other Matter, Studio Plastique and architecture firm Snøhetta. The entry is now with the panel of leading industry figures, who will decide which projects and products will be the winner for each category in November. Dezeen claims to be the world’s most popular and influential architecture, interiors and design magazine, with over three million monthly readers and six million social media followers. Dezeen was launched by Marcus Fairs in November 2006. In 2021, Dezeen was acquired by Danish media group JP/Politiken Media Group.


The resulting HONEXT panels have potentially a range of construction industry- related application possibilities. If the MDF story and its incredible dynamic evolution is a comparative and a point of reference, of what can happen over time in the panels sector internationally, then the future could look extremely exciting for this ‘new kid on the block’. Watch this space! ■


About the author In 2011, Geoff Rhodes established GRA as a specialist forest products and international trade consultancy, providing independent in-depth assessment of markets and market potential for wood-based panel products. He is well known for his pioneering work over many years driving the introduction and huge expansion in the use of MDF in the UK and international markets. He is a former president of the Timber Trade Federation, the European Association of MDF Manufacturers (EMB) and the Fibre Building Board Federation (FIDOR) and is also a Fellow of the Institute of Materials, Minerals and Mining. He has been writing for TTJ sister publication WBPI for several years. ■


www.ttjonline.com | November/December 2021 | TTJ


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93