search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
here was 75, and the final ‘as-built’ energy model showed an improvement at 73 ekWh/m2


. All extra power from the solar panels is exported to other campus buildings.


Necessary to satisfying extreme levels of hyper-efficiency, establishing an energy budget at the outset of the project represented a fundamental shift in the design approach. Joanne McCallum, Executive Architect and Principal in Charge at mcCallumSather, explained, “The energy budget became a driver, not a consequence, of design decisions and an equal priority to the stringent financial budget. All design decisions revolved around meeting these targets, but without sacrificing the high quality of student experience essential to the success of this institution.” The environmental technologies include: a high-performance building envelope consisting of triple-glazing and insulated pre-cast sandwich panels to maximise heating and cooling as well as natural light; a green roof with extensive planted areas; 28 geothermal wells; a variable refrigerant flow heat pump system; a dedicated outdoor air ventilation system; illumination and occupancy sensor-controlled LED lighting; high-efficiency plumbing fixtures; as well as extensive measurement and verification protocols and infrastructure. Far surpassing the building air tightness target of 2 lps/m2 cent better than projected.


, testing revealed it to be 0.545 lps/m2 , 73 per


12 Building section 13 to 17 Instead of hiding them away, the solar panels are prominently displayed as a central design feature to allow students to learn about solar energy


13


Image from mcCallumSather


12


14


              


     


 





 


 


 


26 FUTURARC 


 


 


 

















Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95