Fire and explosion risks posed by carriage of
scrap metal
The NorthStandard P&I Club presents the risk involved with bulk shipments of scrap ferrous metal, as explained by Dr Neil Sanders of Burgoynes Consulting Scientists and Engineers.
According to NorthStandard, bulk shipments of scrap ferrous metal (iron and steel) bring risks involving heating, flammable gas production and fires. Dr Neil Sanders of Burgoynes Consulting Scientists and Engineers shares the potential problems with all types of scrap ferrous metals in this article.
1
Self-heating, possibly to ignition
In practice, self-heating has occurred in cargoes that were declared as scrap metal, Group C, as well as in ferrous turnings etc., Group B. Self- heating occurs because iron and steel oxidise (rust) by reacting with oxygen in air, or oxygen in water. Oxidation reactions produce heat, which tends to be retained due to the insulating effect of surrounding cargo. The oxidation reactions become exponentially faster at higher temperatures, so self-heating can worsen, sometimes to the point of ignition, depending on the circumstances and actions taken.
Freshly exposed iron and steel surfaces have a high tendency to oxidise, whereas ‘aged’ surfaces that are already oxidised react more slowly, or insignificantly. Fresh surfaces may occur because the metal has been recently shredded, or because it has been stored after shredding in a way that avoids exposure to air, e.g., within a large stockpile or coated in oil that drains off.
2
Hydrogen, produced by water oxidation of scrap
iron and steel
Hydrogen is highly flammable over a wide range of
concentrations of hydrogen and air/oxygen. It is also extremely easy to ignite, odourless and colourless. We have seen cargoes declared as scrap metal, Group C, producing problematic amounts of hydrogen which, if allowed to build up and ignite, would cause an explosion in ship’s holds.
Although the IMSBC Code entries mention trying to keep these cargoes dry, in practice scrap iron and steel cargoes are often stored in outside stockpiles in the rain, and terminals use water sprays to suppress dust. Therefore, iron and steel scrap may be wet, potentially producing hydrogen.
Seawater has a greater tendency than fresh water to oxidise iron and steel, producing hydrogen, but fresh water can also produce hydrogen, depending on the circumstances. The IMSBC Code does not indicate measuring gases in holds, so hydrogen production may go unnoticed.
58 | ISSUE 107 | MAR 2024 | THE REPORT 3
Combustible materials in the cargo, such as cardboard, rags, plastics from recycled
items, oils, and flammable gases from cylinders or aerosols.
Some of these combustible materials can be ignited at temperatures from roughly 250°C upwards, which is much lower than the ignition temperature of the scrap iron and steel. Fires in scrap metal (Group C) cargoes usually involve combustibles in the cargo and only rarely the scrap metal itself.
4 5
Ignition sources in the cargo, such as batteries and cylinders with flammable gases.
These items are of course contaminants, but they may be present due to the source of the scrap, e.g., household recycling. They may cause ignition during handling or shifting of cargo, or spontaneously. Burning material may also be loaded with the cargo.
Asphyxiating atmospheres due to oxidation of iron and steel cargo
removing oxygen from the hold gases.
Oxygen may also be removed from adjacent spaces, if there are any gaps in bulkheads. In the case of self-heating or fire, carbon monoxide and carbon dioxide will be produced, which can also cause asphyxiation. Therefore, thorough risk assessments and precautions are needed before entering holds containing iron and steel scrap, and the same applies to adjacent spaces.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132