search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
SAFE T Y


Briefings Crude tanker S-Trust fire caused by lithium-Ion battery is finding


The National Transportation Safety Board (NTSB) has released an investigation report into the blaze on the bridge of the crude tanker S-Trust. On 13 November 2022, a fire started on the bridge of the crude tanker S-Trust while the vessel was docked at the Genesis Port Allen Terminal in Baton Rouge, Louisiana. Fire teams from the vessel’s crew extinguished the fire. There were no injuries and no pollution was reported. The damage to the vessel was estimated at $3 million.


The S-Trust was a Liberian-flagged, 800-foot-long, steel-hulled liquid bulk cargo vessel. The vessel was built in 2005 and had a cargo capacity of 741,732 barrels. The vessel’s superstructure contained living quarters, the galley, a ship’s office, the cargo control room, and the bridge; it consisted of five decks: the main deck, A deck, B deck, C deck, and the bridge deck.


Investigators found the remains of three batteries (one nickel-metal hydride and two lithium-ion) on the communications table. The single nickel-metal hydride battery (all of its six cells) was intact; one of the lithium-ion batteries (both cells) was found intact in the remains of the chargers (one nickel-metal hydride charger and one lithium-ion charger). Investigators only found components of the second lithium-ion battery (a two-cell battery). Lithium-ion battery cell explosions are typically caused by a thermal runaway; as such, the initial orange flash and puff of smoke on the video feed was likely the result of one of the missing lithium-ion cells exploding due to a thermal runaway. The heat produced from a thermal runaway of a lithium-ion battery cell can exceed 1,100° F, which can easily cause any nearby combustible material to ignite, including adjoining cells of the same battery. As the fire expanded, the closed-circuit video captured a second flash, followed by a flaming object being propelled from the fire and landing on the deck of the bridge, where it continued to burn. This was most likely the other missing lithium-ion cell from the same battery. Based on the video, investigators determined that the second missing lithium-ion cell also experienced a thermal runaway, most likely initiated from the heat of the fire started by the initial battery cell thermal runaway.


A thermal runaway occurs when a cell overheats and combusts; it is a chemical reaction that can occur to any type of battery cell if it is damaged, shorted, overheated, defective, or overcharged. It is possible, based on the battery remains’ location among the charger remains, that one of the batteries had been left in the charger, which could have led to overcharging. However, a crewmember told investigators that the batteries were not in the chargers before the fire. Further, investigators were not able to find the missing cells, and, due to the explosion, the extensive heat from the thermal runaway reaction, and subsequent fire on the bridge, the battery cells may have been completely consumed. Therefore, investigators could not examine the first cell that exploded to determine the exact cause of the initial thermal runaway.


The National Transportation Safety Board determines that the probable cause of the fire on the bridge of the S-Trust was the thermal runaway of one of the cells in a lithium-ion battery for a UHF handheld radio.


Lessons Learned Lithium-ion Battery Fires


A lithium-ion battery cell, if damaged, shorted, overheated, defective, or overcharged, can spontaneously experience a thermal runaway which is a chemical reaction that can cause the cell to ignite and explode. A cell that has exploded can be propelled from its initial position within a battery. Due to the potential for rapid expansion of a lithium-ion battery fire, detection, containment, and extinguishment are essential to prevent damage to a vessel.


Crews can help prevent thermal runaways and ensuing fires by doing the following:


– follow manufacturers’ instructions for the care and maintenance of lithium-ion batteries,


– properly dispose of damaged batteries,


– avoid unsupervised charging, and


– keep batteries and chargers away from heat sources and flammable materials.


Additionally, companies should ensure that lithium- ion batteries and devices that use lithium-ion batteries are certified by an Underwriter’s Laboratory or another recognized organization. Should a lithium-ion battery fire occur, crews can attempt to extinguish the fire with water, foam, CO2, or other dry chemical or powdered agents. However, if the battery fire cannot be extinguished, personnel should attempt to allow the pack to burn in a controlled manner; this includes watching for nearby cells that may also experience thermal runaway and extinguishing other combustibles that may catch on fire.


Download the report at https://bit.ly/3utRpgT. THE REPORT | MAR 2024 | ISSUE 107 | 23


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132