Lube-Tech PUBLISHED BY LUBE: THE EUROPEAN LUBRICANTS INDUSTRY MAGAZINE
Chart 3 plots the relationship between the VI of the base oil and thickener content. Again, there are correlations (R-squared 0.57 to 0.90) between the VI of the base oil and the thickener content for all but the Ca sulfonate grease (R-squared = 0.06). The higher the VI of the base oil, the higher the required thickener content, since the VI of petroleum hydrocarbons is strongly inversely correlated with solvency.
No.115 page 6
Experimental results illustrated a significant relationship between base oil solvency and thickener yield; this relationship has real economic value for grease manufacturers.
Physical properties including mechanical stability, roll stability, dropping point, oil separation, and mobility exhibited favorable results for all base oils in the study. These observations remind us that base oil selection and preference should differ according to the requirements of the application. Paraffinic chemistries maintain a leading role in engine oil applications; however, it is evident throughout our study that a specialized application, such as grease, can benefit from high solvency and low PAH content as found in modern naphthenic base oils.
Chart 4. Viscosity-Gravity Constant vs Thickener Content
Chart 4 plots the relationship between the VGC and thickener content. For this parameter, there were stronger correlations and the R-squared values ranged from 0.43 to 0.91 for most greases compared to Ca sulfonate (R-squared = 0.22). Li 12-HSA had the highest R-squared at 0.91. The higher the VGC, the higher the solvency and the lower the thickener content.
Conclusions
These data have demonstrated that the solvency of the base oil is critical to the processing of the grease. The NLGI grade is defined by the penetration values which are affected by the efficiency of the thickener system, the base oil, and the thickener. By decreasing the amount of thickener to produce a particular grade of grease, the overall costs of the formulation can be reduced.
References 1. ASTM D611-12 (2016), “Standard Test Methods for Aniline Point and Mixed Aniline Point of Petroleum Products and Hydrocarbon Solvents“, Annual Book of ASTM Standards, Vol. 5.01.
2. ASTM D2270-10 (2016), “Standard Practice for Calculating Viscosity Index from Kinematic Viscosity at 40°C and 100°C”, Annual Book of ASTM Standards, Vol. 5.01.
3. ASTM D2501-14 “Standard Test Method for Calculation of Viscosity-Gravity Constant (VGC) of Petroleum Oils“, Annual Book of ASTM Standards, Vol. 5.01.
LINK
www.ergon.com
LUBE MAGAZINE NO.144 APRIL 2018
37
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68