search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
76 MICROSCOPY & IMAGING


Fig. 5. Merged image of placenta cells showing precise colocalisation of markers Image courtesy of Asako Sakaue-Sawano & Atsushi


Miyawaki, RIKEN Brain Science Institute Laboratory for Cell Function Dynamics


Fig. 4. Observation of cells in a whole mouse placenta (sequential tomography) using a 40x silicone immersion objective (Olympus UPLSAPO40XS) Image courtesy of Asako Sakaue-Sawano RIKEN Brain Science Institute Laboratory for Cell Function Dynamics


confocal laser-scanning microscope to make high-resolution deep tissue observations of morphologically intact cells within a whole mouse placenta without needing to section it. It was possible to precisely observe colocalisation of


ubiquitination-based cell cycle indicators (Fucci), (S/G2/M-Green, G1-Red) and the nucleus (DAPI-Blue) (Figs 4 and 5).


Breaking new ground Silicone objectives are even driving


new technologies in live-cell imaging. Te world’s first long-term, real-time observation of plant zygote embryogenesis was made possible by combining a new ovule culture system with a microscope capable of high sensitivity embryo imaging inside the ovule and covered by multiple layers of cells. In this study by Te Optical


Technology Group of ERATO Higashiyama Live-Holonics Project at Japan’s Nagoya University, long-term live-cell imaging of plant zygote division and growth was made possible by the development of a special medium and a new microdevice, the use of which included a silicone immersion objective (Olympus UPLSAPO30XS) (Fig.6). Tis objective has a high numerical aperture of 1.05 and a long working distance of 0.8mm, which is required for deep, high- definition imaging while retaining a wide field of view. With this set-up the process of embryogenesis was stably observed in real time for 67 hours from the early to late embryo.


Summary As shown by the examples discussed here, silicone immersion objectives are proving to be the perfect partner for live-cell imaging applications, delivering unmatched resolution, clarity and reproducibility.


Fig. 6. Microdevice with a 30x silicone immersion objective (Olympus UPLSAPO30XS). Multipoint time-lapse images were acquired with a motorised XY stage


www.scientistlive.com


Dr Jan Barghaan is with Olympus Europa. www.olympus-europa.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84