Laboratory Products
Temperature control in the pharmaceutical industry:
Vaccine research in focus Julabo GmbH
Reproducible results in laboratory work require the use of state-of-the-art laboratory devices. Vaccine research therefore relies on temperature control solutions from Julabo. The devices create defi ned conditions for cell culture and sample preparation.
Biotechnology can solve many of today’s challenges. The spectrum ranges from the development of procedures for wastewater treatment and sustainable plastics to the development and production of highly effective pharmaceutical substances.
Scientists involved in vaccine research are dedicated to combating infectious diseases. Tetanus, diphtheria or poliomyelitis: These are well-known examples of diseases that have lost their horror as a result of scientifi c progress. There are also new diseases such as hospital germs and bacteria that develop resistance to antibiotics.
Manufacture and development of vaccines
Vaccine research plays a special role in the control of health risks. In future, epidemics or pandemics will only be able to be prevented by improving the supply of vaccines. For this, ongoing
research is needed into new vaccines. This is due to the ability of already known pathogens to mutate and the occurrence of new diseases. Based on this, the key question for scientists is: Which vaccine can protect the human immune system from the detected pathogen? Vaccine candidates must fi rst demonstrate their effi cacy in in vitro assays. For this purpose, human immune cells are cultured under defi ned conditions and incubated with the antibodies.
Improving production capacity is just as important as research into pathogens and effective vaccines. Only a uniform distribution of vaccination options across the population can avoid the global spread of infectious diseases. This requires not only economic and political efforts, but also a signifi cant increase in technical capacities for vaccine production. That’s why specialists are exploring new, more effi cient procedures for the cultivation of vaccines.
Reproducible results in laboratory work require the use of state-of-the- art laboratory devices.
Let’s take the production of vaccines against infl uenza as an example: Vaccination capacity against the virus is limited. This is due, among other things, to limited scalability of the predominant manufacturing processes. However, scientifi c efforts have already made great progress in this area.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96