Mass Spectrometry & Spectroscopy 15
the thermodynamic barrier for rotation of the carbon-nitrogen bond can be calculated. With a benchtop instrument, NMR experiments can now follow a similar pattern with prediction, experiment, and result happening in the same session.
Reaction Monitoring
The ability to easily integrate flow cells into benchtop NMR also extends the benefits for both research and teaching beyond structural elucidation. With benchtop NMR, analysis can be run in minutes to determine the success of a reaction – no more running down to the user facility or sending samples to external companies for routine analysis.
One simple example is the flow rate and temperature dependent esterification of ethanol and ethanoic acid catalysed by sulphuric acid (reaction shown in Figure 5). The product synthesised, ethyl ethanoate, a solvent that is used for varnishes, lacquers, dry cleaning, stains, fats, and nitrocellulose.
Figure 5: Flow rate and temperature dependent esterification of ethanol and ethanoic acid catalysed by sulphuric acid.
To investigate the rate constant dependence on temperature, a flow cell set-up (Figure 6) was used with X-Pulse and the reaction performed at varying temperatures.
Table 2: Temperature dependent variation in rate constant.
Figure 6: Schematic (above) and physical set-up (below) in a fume hood showing how flow chemistry is incorporate.
Table 2 shows the temperature dependent variation in rate constant. NMR additionally enables determination of enthalpy (ΔH), entropy (ΔS) (associated with reaching the transition state from the reactants, and the Gibbs Free Energy (ΔG). For more information on how this was calculated please see our app note here.
Conclusion
The availability of cryogen free, benchtop NMR has enabled analytical scientists, university teaching courses, and industrial
research facilities to bring the NMR technique right into the heart of their labs. Benchtop NMR has removed the high upfront and maintenance cost of traditional high-field NMR, and with the arrival of the true broadband X-Pulse NMR incorporating comprehensive flow and temperature control, a single instrument now addresses needs ranging from student teaching, right through to high end R&D and industrial QA/QC.
References 1. E. O. Stejskal & J. E. Tanner, J. Chem. Phys., 1965, 42, 288-292.
2. M. Defernez; E. Wren; A. D. Watson; Y. Gunning; I. J. Colquhoun; G. L. Gall; D. Williamson & E. K. Kemsley, Food Chem., 2017, 216, 106-113
Read, Share and Comment on this Article, visit:
www.labmate-online.com/article
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96