search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Mass Spectrometry & Spectroscopy


UV-Vis and fl uorescence spectroscopy illuminate biological applications Dr Ursula Tems, Pharma/BioPharma Marketing Director, Molecular Spectroscopy, Agilent Technologies


In the intricate landscape of biological research, understanding the behaviour and properties of biomolecules - those tiny building blocks of life - is paramount. UV-Vis (Ultraviolet-Visible) spectroscopy and fl uorescence spectroscopy are two powerful techniques that shed light on the otherwise invisible interactions within cells, tissues, and organisms. In this article, we delve into their applications, principles, and the advantages they offer over other methods.


About the technologies


UV-Vis spectroscopy involves shining light in the ultraviolet (UV) and visible (Vis) wavelength regions onto a sample and measuring how much light it absorbs, to provide information about the electronic transitions of molecules. As well as being non-destructive, UV-Vis is a well-established, easy, and fast technique that requires minimal consumables and so is also cost effi cient. UV-Vis is used in many biological applications for providing the concentration of a sample, or for characterisation of a sample. For example, protein concentration can be determined by observing the maximum absorbance at a specifi c wavelength, and the quality of the sample determined by observing the spectra to ensure that there are no contaminants.


The other key use is to measure changes that occur over time, or over different temperatures, for example, monitoring an enzyme assay or a thermal denaturation experiment. Recent advances in UV-Vis technology have enhanced its usability and accuracy, for example the Cary 3500 UV-Vis spectrophotometer can measure eight samples simultaneously, and at four different temperatures simultaneously, ideal for monitoring biological enzymes. In addition to this, some accessories exist that allow users to directly quantify very low volume samples of purifi ed nucleic acid or protein samples without the need for sample dilution.


Fluorescence spectroscopy takes advantage of the intrinsic fl uorescence of many biological molecules, such as proteins and nucleic acids. These molecules absorb light (excitation) and emit light (emission) at specifi c wavelengths. The strengths of fl uorescence spectroscopy are specifi city, sensitivity, and the ability to analyse molecular interactions, but fl uorescence spectroscopy has many additional biological applications and is a widely used workhorse in life science laboratories.


A recent and unique example of how fl uorescence spectroscopy can be used in biological laboratories is for screening monoclonal antibodies that are prone to aggregation.


Eight samples at four temperatures simultaneously with the Cary 3500 UV-Vis Multizone Peltier Spectrophotometer.


A fl uorescence spectrophotometer is fl exible, able to be combined with many types of sample presentation accessories, and in this case a plate reader is used for high throughput. The properties of a fl uorescent dye are used to indicate which monoclonal antibody samples aggregate and are therefore not useful for further analysis [1].


The wavelengths at which many biomolecules fl uoresce is well characterised, and this can be used to measure the concentration of one type of molecule very specifi cally in a mixture.


Flexible fl uorescence spectroscopy with plate reader.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148