search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
WATER / WASTEWATER 63 Turning Data into Decisions


From a global perspective, the purpose of monitoring is to help policy and decision makers at all levels of government to identify challenges and opportunities, set priorities for more effective and efficient implementation, communicate progress (or lack thereof and therefore associated requirements), to ensure accountability, and generate political, public and private sector support for further investments. In this context, the term ‘monitoring’ also includes the gathering of data from regions or organisations, but this article relates specifically to practical environmental monitoring - on the ground and in the field - delivering reliable, granular, defensible data that can be used to underpin the speed and effectivity of important decisions.


The technological challenges of remote data collection have become robust and more comprehensive than ever. As a result, a range of sensors, loggers, power supplies, and telemetry options are available to monitor and manage water data. The potential risk in the ease with which large quantities of remote data can now be gathered automatically is that users may become data rich and information poor. Software that can be quickly and easily configured are now able to provide data solutions that deliver the relevant data, where and when it’s needed most:


• Data Consolidation: Useful for data being collected from multiple sources, especially for complex stations with 3+ telemetry methods needed simultaneously. Third-party data can also be brought into view on the same centralised dashboard to aggregate collected data into one source of truth.


• Data Analysis: To unlock the full value of the collected data from any network size or type, made possible through easy visualisation, scanning, and QA/QC of data with rating curves, automated error detections, and intuitive correction tools that compare historic time-series or discrete data with a defensible audit trail.


• Data Sharing (Internal/External): Provides near real-time alerts, maps, and more to relevant internal and external stakeholders. Data sharing completes the journey of data from sensor to end user, to ensure decisions are made fully informed with the right information.


The advancement of software solutions means that users can be alerted when pre-specified conditions arise – fire, hurricane, heavy rain, etc. It also means that monitoring stations can be visually represented on maps, making it quick and easy to drill down to key data such as the reading from a single water level sensor. For example, water resource managers can integrate environmental data from multiple sources into a single platform like AQUARIUS. This is a toolbox for water managers, allowing them to control the quality of data, build better rating curves, derive statistics, and report in real-time to meet stakeholder expectations for timely, accurate water information. With software, location management is centralized and simplified with easy to search and filter identifiers. Existing systems where other field data exist can be synched for further efficiencies.


Applications in Hydrology Monitoring Major hydrology monitoring applications include: • Surface water quantity o Water level


o Discharge and flow o Precipitation o Flood/drought o Water availability and resource management • Surface water quality o Temperature o Conductivity o Dissolved Oxygen


• Groundwater o Water availability


The Importance of Modernisation


As the urgency for collecting and understanding data grows, it’s important to make sure your monitoring network isn’t becoming out-of-date. When equipment becomes older it may become obsolete or unable to configure with a more advanced network or type of technology. Newer equipment like sensors and dataloggers are compatible with advanced technology including multiple telemetry methods which allows you to invest in your collected data for 10-15 years to come. You can ensure your data is high quality to support the crucial decisions you make on a regular basis.


The key to growth is intuitive, easy-to-understand systems that make training straight- forward for teams. By updating your current system, which may have a complicated set-up of many different sondes, sensors, and dataloggers collected over time, you could reduce both time in setting up and the amount of knowledge needed to bring someone to speed on the current network.


Modernised equipment also helps with the total cost of ownership of your network when it comes to lifetime costs and values of your equipment. Total cost of ownership includes the total upfront cost but also cost of maintenance and repairs overtime, the time and money spent on training employees and visiting the field, and the energy needed to learn and understand new systems. An optimised network may cost more upfront but reduce costs, time, and energy rapidly as time goes on.


Modern systems are optimised to be compatible with a greater number of configurations and have more advanced capabilities like python scripting and interchangeable modem cards or more detailed QA/QC information sent remotely from the field.


About OTT HydroMet


OTT HydroMet delivers superior customer outcomes by providing decision-makers with vital insights they trust. Our exceptional technical expertise and solutions seamlessly integrate hardware, software, and services across an unmatched range of environmental monitoring applications. We aim to provide expert knowledge in the journey from data to insights, and with leading edge products along the entire data chain.


Get in touch with our team to learn more and easily transform complex data into knowledge.


From a national perspective, it is vital that baseline data are established so that trends can be monitored and that projection models are based on accurate data. At a local level, it is necessary to understand individual catchments and their interaction with the local environment and communities. Monitoring systems should therefore be capable of detecting trends, measuring the effectiveness of mitigation measures, and providing timely warnings when alarm conditions arise. A holistic approach will be necessary if we are to better understand catchments; this means that groundwater and surface water levels should be correlated with upper catchment monitoring which includes the measurement of meteorological parameters.


Smart water management will ultimately provide transparency into your data to allow you to do more with less: take action quickly, have full insight into your important and timely decisions, have confidence in immediate responses during emergency situations, and automate and optimise your network for easier management. This allows your team to focus on their work rather than manual data collection or entry, to ensure dedication towards forward-looking strategies while your monitoring systems remain efficient and sustainable long-term.


Resources: • Thirst for Knowledge eBook • Managing Data from Field Sensor to Software • OTT ecolog 1000 Video • Meet AQUARIUS Video • SUTRON XLINK 500 • AQUARIUS Software Solution


For more information and to download or view a selection of the above resources, visit otthydromet.com/aquarius or contact euinfo@otthydromet.com.


Author Contact Details The OTT HydroMet Team • Ludwigstrasse 16, 87437 Kempten, Germany • Tel: +49 831 5617-0 • Email: euinfo@otthydromet.com • Web: www.ott.com


WWW.ENVIROTECH-ONLINE.COM IET SEPTEMBER/OCTOBER 2021


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84