search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
FOCUS on PFAS ANALYSIS - ENVIRONMENTAL LABORATORY 21


For untargeted PFAS analysis, the Agilent 6546 LC/Q-TOF provides high-resolution measurements with its wide dynamic range and sub-ppm mass accuracy. Complementing the system with Agilent MassHunter and Agilent Mass Profiler Professional software makes it even easier to identify novel PFAS.


The experimental challenges


initiatives worldwide. This regulatory framework is expanding with the increasing numbers of PFAS identified in the environment and differs across regions. Under the EU Drinking Water Directive, 20 PFAS compounds must be monitored in drinking water. The US EPA has also issued advisory limits for PFOS and PFOA in drinking water. In addition, several US states have established their own advisory levels for PFOA, PFOS, and other PFAS.


As a result of continually developing regulations, labs working to develop analytical methods must ensure that they stay up to date with the latest guidance. This proves a considerable challenge, with new PFAS regularly added to regulatory lists and recommended limits in various matrices often lowered.


The current established methods for PFAS quantification vary from each other in terms of the type and number of PFAS analyzed, the matrices studied, the sample preparation technique used, and the detection limits applied. In the US, two EPA methods—EPA 533 and 537/537.1—specifically address quantification of PFAS in drinking water. Both methods make use of solid phase extraction (SPE) followed by analysis using LC/MS/MS, enabling the detection of low concentrations of PFAS. The EPA 8327 and ASTM 7979 methods are specific to PFAS in ground water, surface water, and wastewater; ASTM 7968 is related to analyzing PFAS in soils and solids. Agilent has produced a number of application notes that describe experimental conditions for running each of these methods.


The right analytical techniques


In terms of preferred instrumentation for PFAS analysis, LC/MS/ MS using electrospray ionization (ESI) stands as the technique of choice. More specifically, triple quadrupole (TQ) MS instruments generate sensitive, targeted PFAS data, while quadrupole time- of-flight (Q-TOF) MS systems are used to identify novel PFAS. Typically, SPE is applied to extract PFAS from drinking water using an anion exchange resin.


Agilent supplies three triple quadrupole LC/MS systems that can be used to analyze PFAS in environmental matrices: The Agilent


Agilent offers a PFC-free HPLC conversion kit for removing PFAS background from LC/MS measurements. The kit includes replacement parts for each section of the LC system that features organic fluorine compounds, as well as an Agilent InfinityLab PFC delay column with Agilent InfinityLab Quick Connect fittings. The solvent lines included in the kit are made of polypropylene and are easy to use due to their flexibility; The Agilent InfinityLab Stay Safe caps are also free of fluorinated materials. The kit is intended for use with an Agilent 1290 Infinity II LC with a high-speed pump and an Agilent 1290 Infinity II Multisampler. The combination of these LC modules provides the best conditions for PFAS analysis, as wash options allow for cleaning of the injection needle, needle seat, and needle seat capillary to minimize carryover from PFAS that may stick to these parts. As a further means of eliminating PFAS background, mobile phase solvents can be filtered using the Agilent InfinityLab Solvent Filtration Assembly prior to analysis.


Further products that help remove unwanted PFAS include Agilent Captiva premium syringe filters, which also limit the sample cleanup necessary before analysis. A weak anion exchange (WAX) resin is also available for drinking water extraction using offline SPE.


Agilent 6470 triple quadrupole LC/MS


Ultivo triple quadrupole LC/MS is ideally suited to those getting started in LC/MS analysis, providing high accuracy and precision despite its compact size and featuring enhanced maintenance feedback. The Agilent 6470 triple quadrupole LC/MS offers improved sensitivity and facilitates analysis of high matrix samples without requiring substantial cleanup, while reaching exceedingly low levels of detection. In fact, the 6470 LC/TQ was demonstrated to surpass performance requirements for the EPA 8327 and ASTM methods when analyzing PFAS in non-potable water. For even higher performance, the Agilent 6495 triple quadrupole LC/MS enables extremely low limits of quantitation and the simultaneous analysis of several classes of PFAS.


Method development is made challenging by the fact that increasing numbers of PFAS must be quantified at low detection limits and decreasing minimum reporting levels. This requires highly sensitive instrumentation and skilled analysts, who must also often work without validated reference materials, few of which are available for PFAS. To assist in method development, Agilent provides Method & Applications Services to help labs install new instruments, update and optimize existing methods, and train staff appropriately. A PFAS Consumables Ordering Guide is also available, featuring downloadable, customizable lists of the Agilent products required for each regulated method and saving analysts time when ordering supplies.


The future prospects


To keep pace with developing PFAS regulations, it is important for labs to have flexible solutions in place. The 6470 and 6495 triple quadrupole LC/MS and 6546 LC/Q-TOF systems, with their outstanding sensitivity and broad dynamic ranges, provide


DE44445.0258912037


Author Contact Details Tarun Anumol, PhD. Director for Global Food & Environmental Markets at Agilent • Email: tarun.anumol@agilent.com • Web: http://www.agilent.com/chem/emethod-for-pfas


WWW.ENVIROTECH-ONLINE.COM IET SEPTEMBER/OCTOBER 2021


Analysts are faced with various challenges when attempting to quantify PFAS in the lab. Because of the high numbers of PFAS that have been produced and implemented in applications worldwide, these compounds can be found in a wide variety of matrices. These can include laboratory supplies and instrumentation, which can lead to contamination of PFAS samples and inaccurate results. Certain PFAS are retained on glass, resulting in low recoveries where tools such as glass pipettes are used. Scientists must be aware of how PFAS interact with their instrumentation in order to correctly interpret results, and unwanted PFAS must be consistently removed from labware prior to experimentation. Fluoropolymers used in LC and MS instrumentation must also be accounted for. Agilent supplies a full range of consumables that have been validated as being free of PFAS or having concentrations below typical detection levels for various common PFAS.


the flexibility needed to accommodate evolving regulatory requirements. All three instruments have proven reliable through years of service, helping a lab make meaningful long-term plans when investing in these systems.


In time to come, to accelerate sample introduction, there may be more of a shift towards large-volume direct injection or online SPE as a sample preparation method. Agilent LC/Q-TOF systems and the Agilent 1290 Infinity II Online SPE System are well placed to cater to these developments.


The PFAS MRM database can also be used as a means of updating existing methods where necessary, as the number of PFAS it currently list far exceeds those that feature in current regulatory methods. This reduces the time needed to investigate experimental conditions for newly analyzed compounds, enabling analysts to quickly proceed to verification testing and to establish the new method.


The PFAS in Drinking and Surface Water by LC/TQ eMethod, given the large number of PFAS that it can be used to effectively detect at low levels, also supports labs as they expand their methods with further PFAS target analytes. The eMethod also reduces method development time by providing optimized conditions for the PFAS analysis of interest.


Another potential development may be that isotope dilution for the quantification of PFAS becomes more prevalent. If this is the case, both the PFAS eMethod and Agilent LC/Q-TOF instruments can accommodate isotope dilution well. Due to recent studies demonstrating that PFAS can escape into the air, there is also a need to develop GC/MS methods addressing the air contamination, too. As these methods come into being, the Agilent GC/Q-TOF systems can be applied to effectively analyze PFAS in air at very low detection limits.


The best support in PFAS analysis


Understanding PFAS analytical methods and regulations as well as choosing the right instruments and consumables is key to getting your lab ready for PFAS analysis. The Agilent eMethod makes PFAS analysis using LC/MS accessible to everyone so as to get you up and running in the shortest time possible whilst delivering high quality, accurate and sensitive results.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84