search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
HOW DIGITAL MEASUREMENT IS MAKING WAVES IN WATER AND WASTEWATER TREATMENT


Developments in measurement technology are opening new opportunities for the operation and management of both potable and wastewater treatment processes. Julian Edwards, Analytical Sales Specialist for ABB Measurement and Analytics looks at some examples of the new digital sensing technologies on offer and explains how they are already delivering real benefi ts for water utilities.


Conventional wisdom dictates that it’s always better to prevent a problem rather than trying to deal with it once it has happened. This is especially the case in the water industry, where failure of an instrument, pipeline or item of plant such as a pump or motor can have a potentially signifi cant impact on everything from supply through to regulatory compliance.


The need to meet stringent environmental legislation and maximise profi tability through reduced operating costs is incentivising many operators to fi nd ways to better understand what’s happening in their processes.


Developments in digital water sensing technology are offering unprecedented access to a raft of real-time, high accuracy data without the drawbacks associated with many conventional sensor types. By utilising these devices, operators can count on greatly improved measurement of many of the key parameters entailed in potable and wastewater treatment processes.


For operators, a key advantage has been the ability to make informed decisions based on data that refl ects actual operating conditions, either in real or near-real time. This is becoming increasingly desirable as the management of water supplies comes under pressure from the combined forces of population growth, rising urbanisation and growing industrialisation. Each consumes large amounts of water and generates effl uent waste that needs to be treated to the highest quality before being returned to the environment.


Making the switch to digital


Successful adoption of digitalisation starts with identifying the right balance of both tools, in terms of the front line instruments, and the systems that will be used to collect, analyse and distribute the collected data.


At the most basic level, digitalisation enables plant operators to improve their snapshot view and understanding of what’s happening in their current operations. At the highest levels, it can also be leveraged strategically for improving customer satisfaction, balancing allocation of capital, and supporting better decision- making in day-to-day business, fi nancial, and water treatment activities.


The immediacy of digital technology makes it an ideal platform for continuous water quality measurement. Compared to traditional manual sampling methods, continuous online analyser systems enable samples to be automatically measured and analysed at the point of sampling, giving real-time indication of current process conditions and eliminating many of the uncertainties that


IET SEPTEMBER/OCTOBER 2021 WWW.ENVIROTECH-ONLINE.COM Digital Transmitter range


can arise when a sample is transported for laboratory analysis. When combined with the inherent benefi ts of digital technology, continuous water quality analysers are offering new possibilities for a more detailed picture of water quality as well as greatly improved accuracy and performance.


These same benefi ts also extend to maintenance. Traditionally, devising an instrument maintenance regime has relied on a combination of manufacturer guidelines, established practice and, to some extent, guesswork. Operators could put together a maintenance schedule based on the likely operational lifespan of a device, coupled with the anticipated effects of exposure to the medium being measured. What they often couldn’t predict, however, was the impact of any unforeseen variations, either in the performance of the device or the substance it was in contact with.


The effectiveness of the maintenance and inspection routines also relied on having the staff available to carry them out. With a growing number of companies increasingly faced with shrinking engineering teams stretched across multiple sites, there has been a risk that these routines are not always carried out to plan or operated as thoroughly as they should be.


In both cases, there is a risk of measurement performance being affected by deteriorating accuracy or complete instrument failure, increasing the potential for a breach of consent levels and the likelihood of stiff fi nancial penalties being imposed.


With the advent of digital continuous water quality sensors, these challenges are being overcome. When coupled with the arrival of next generation digital transmitters, digital sensors are helping to transform water quality analysis, not least by enabling operators to use the data they generate to create smart maintenance routines. This data can include not just the water quality parameter


being measured, but also device-level diagnostics, opening new possibilities for assessing performance and pinpointing problems before they can develop.


By using this data on the known performance of the sensors to create tailored maintenance routines, operators can start to manage their maintenance resources more intelligently and effectively. Now, engineers need only be dispatched to site when necessary, equipped with the tools and knowledge required to fi x a problem. As well as greatly enhancing the reliability of the installation, the availability of this ‘deeper data’ also helps to reduce the cost of operation and maintenance, enabling digital sensors to offer a much lower total cost of ownership than their analogue counterparts.


AWT210 Modular design


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84