38 May / June 2014
[9] K. Horvath, J.N. Fairchild, G. Guiochon, Anal. Chem. 81 (2009) 3879.
[10] K. Horvath, J. Fairchild, G. Guiochon, J. Chromatogr. A 1216 (2009) 2511.
[11] G. Vivo-Truyols, S. van der Wal, P.J. Schoenmakers, Anal. Chem. 82 (2010) 8525.
[12] Y. Huang, H. Gu, M. Filgueira, P.W. Carr, J. Chromatogr. A 1218 (2011) 2984.
[13] K. Horvath, J.N. Fairchild, G. Guiochon, Anal. Chem. 81 (2009) 3879.
[14] K. Horie, H. Kimura, T. Ikegami, A. Iwatsuka, N. Saad, O. Fiehn, N. Tanaka, Anal. Chem. 79 (2007) 3764.
[15] H. Gu, Y. Huang, P.W. Carr, J. Chromatogr. A 1218 (2011) 64.
[16] L.W. Potts, P.W. Carr, J. Chromatogr. A 1310 (2013) 37.
[17] X. Li, P.W. Carr, J. Chromatogr. A 1218 (2011) 2214.
[18] H. Gu, Y. Huang, M. Filgueira, P.W. Carr, J. Chromatogr. A 1218 (2011) 6675.
[19] U.D. Neue, J.L. Carmody, Y.-F. Cheng, Z. Lu, C.H. Phoebe, T.F. Wheat, in:
P.R.Brown, E. Grushka (Eds.), Advances in Chromatography, vol. 41, Marcel Dekker,Inc., New York and Basel, Switzerland, 2001, p. 93.
[20] J.N. Fairchild, K. Horvath, G. Guiochon, J. Chromatogr. A 1216 (2009) 1363.
[21] L.W. Potts, D.R. Stoll, X. Li, P.W. Carr, J. Chromatogr. A 1217 (2010) 5700.
[22] A. Van der Horst, P.J. Schoenmakers, J. Chromatogr. A 1000 (2003) 693.
[23] R. Grant, C. Cameroon, S. Mackenzie, M. Young, Rapid Commun. Mass Spectrom., 16 (2002) 1785-1792.
[24] I. François, D. Cabooter, K. Sandra, F. Lynen, G. Desmet, P. Sandra, J Sep Sci. 32(8) (2009) 1137-44.
[25] N. Tanaka, H. Kimura, D. Tokuda, K. Hosoya, T. Ikegami, N. Ishizuka, H. Minakuchi, K. Nakanishi, Y. Shintani, M. Furuno, K. Cabrera, Anal. Chem. 76 (2004) 1273.
[26] François, A. de Villiers, P. Sandra, J. Sep. Sci. 29 (2006) 492.
[27] C.J. Venkatramani, Y. Zelechonok, Anal. Chem. 75 (2003) 3484.
[28] D. Ryan, P. Morrison, P. Marriott , J. Chromatogr. A 1071 (2005) 47
[29] T. Edge, L. Pereira, Chromatography Today, Aug/Sept. 2010, p18-20
[30] T. Teutenberg, “High-Temperature Liquid Chromatography: A User’s Guide for Method Development” (2010) RSC Publishing (London)
[31] T. Wray, P. Myers, Chromatography Today, March 2011, 34-36.
Automated Determination of Human Hormones in Drinking Water
Thermo Fisher Scientific has released a new technical note which demonstrates the complete recovery of human hormones from drinking water. Technical Note 148: Automated Extraction and Determination of Human Hormones in Drinking Water uses our newly released polymeric sorbent extraction cartridges (Thermo Scientific™ Dionex™ SolEx™ SPE HRPHS cartridges) on our solid-phase extraction instrument (Thermo Scientific™ Dionex™ AutoTrace 280 instrument) for the determination of human hormones. The SPE instrument can reduce solvent and labor costs by up to 90% in sample preparation of large-volume samples for organic analysis when compared to liquid-liquid extraction. The SPE cartridges allow high recovery of hydrophobic targets.
The presence of hormones (from both natural and artificial sources) in drinking water is a human health concern. Due to the widespread use of hormones in pharmaceuticals, they often end up in the sewage system as a result of excretion and disposal of unwanted quantities. Additionally, hormones from livestock waste can find its way into drinking water sources.
The European Parliament has identified several estrogen variants as priority substances that will be monitored to determine appropriate measures to address the risk posed by these compounds.
For more information visit
www.thermofisher.com
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48