182 T. O. W. Kamgaing et al.
FIG. 1 The study area in Nki National Park, south-east Cameroon, with the location of villages, and transects (T1–4) established for monitoring the disappearance of the dung of blue duiker Philantomba monticola and red duikers Cephalophus spp.
observed dung beetles removing fresh pellets completely within a few hours of detection and therefore when fresh dung disappeared within a day, we considered beetles had removed them. In contrast, decomposition was gradual. Rainfall can wash away dung, but we could distinguish this from removal by beetles. When a dung pile disappeared rapidly, we checked whether it had been covered by fallen leaves, recording ‘leaf cover’ if this was the case. Cover by fallen leaves will affect density estimation in the same way as removal by beetles, as such dung is unlikely to be recorded during a dung survey. Inspecting dung piles twice daily allowed us to record
survival time with precision. To facilitate this monitoring, we camped near the paths for c. 8 days at a time, with 3–4 day breaks between surveys. In total, individual dung piles were visited 2–34 times, in contrast to retrospective surveys, in which animal signs are marked and revisited once to record whether they have disappeared or not (Laing et al., 2003). A dung pile was categorized as disappeared when it was no longer recognizable as a dung pellet group (Marques et al., 2001; van Vliet et al., 2009). We determined the main factor causing each dung pile to disappear by examining the dung remnants or the spot where each dung pile was dropped and, when necessary, by comparing these observations with photographs of the pellets taken at each visit.
Data analysis
As there were 3-to 4-day intervals between each 8-day sur- vey, we occasionallymissed the exact date when some dung piles disappeared, but knew the two dates between which they disappeared. In these cases, we used the mid point of
the two dates for calculating the survival time. The impact of these mid-point data on the variance of survival time es- timates is probably negligible because such data comprised only 7% of the observations and because of the short inter- vals between observations (Bogaerts et al., 2018, chapter 4). To visualize the relationship between the estimate of
dung survival time and age class at detection, we categorized dung piles into four overlapping age classes at detection: 0–3 hours, 0–6, 0–12 and 0–24. To evaluate any effect of age at detection, we fitted a generalized linear model (GLM) to dung survival time with absolute age at detection as the single explanatory variable. Mid-point data were excluded from this analysis. Because age at detection had a significant effect on survival time estimates, we discarded dung piles detected at an older age (i.e. dung piles that were not fresh upon detection) before further analysis. In addition, we dis- carded the top 0–4%of outliers that did not decay for longer periods (in total, five dung piles of the blue duiker and eight of red duikers), to avoid a substantial decrease in the preci- sion of mean survival time estimates but maintain accuracy (Viquerat et al., 2013). We then calculated mean dung survival time for each
season using two approaches: a GLM including only season as the explanatory variable, and simple arithmetic means. Mid-point data were excluded from calculation of arith- metic means but included for the analysis using a GLM. To evaluate the effect of season, the main factor causing
dung disappearance and dung pile diameter (the latter log10 transformed) on dung survival time, we fitted GLMs with a gamma error distribution and log-link function as the response variable (survival time) was non-negative. Spatial autocorrelation of factors causing disappearance, in parti- cular of beetle attack, on neighbouring dung was probably
Oryx, 2023, 57(2), 180–187 © The Author(s), 2022. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605321001599
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140