search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
254 J. Mohd‐Azlan et al.


FIG. 1 Locations of the 31 study areas in Sarawak covering both protected and unprotected areas. (1) Tanjung Datu National Park, (2) Samunsam Wildlife Sanctuary, (3) Gunung Pueh National Park, (4) Gunung Gading National Park, (5) Kubah National Park, (6) Kuching Wetland National Park, (7) Santubong National Park, (8) Bako National Park, (9) Sama Jaya Nature Reserve, (10) Dered Krian National Park, (11) Bungoh Range National Park, (12) Gunung Penrissen, (13) Ulu Sebuyau National Park, (14)Gunung Lesung National Park, (15)Maludam National Park, (16) Batang Ai National Park, (17) Lanjak EntimauWildlife Sanctuary, (18) Ulu Kapit ForestMangement Unit, (19) Pelagus National Park, (20)Hose Mountain, (21) Ulu Baleh, (22)Baleh National Park, (23) Similajau National Park, (24) SungaiMeluang National Park, (25)Oil Palm Plantation matrix, (26) Loagan Bunut National Park, (27)LambirHills National Park, (28) GunungMulu National Park, (29)Ulu Trusan,(30)Pulong Tau National Park, (31)Baram.


Native peoples still live and hunt in Sarawak as they have for millennia, with the whole community of a village occupying a single longhouse. We assumed the intensity of anthropo- genic activities would be greatest near a longhouse and thus measured the distance from a camera trap to the nearest longhouse as an indicator of the intensity of anthropogenic disturbance that could influence species distributions. Occur- rence probabilities were estimated using the Dorazio–Royle community model (Kéry & Royle, 2015;Huang et al., 2020). This hierarchical model assesses responses to ecological and anthropogenic factors based on the suite of detection histories across the species community (Brodie et al., 2015b; Kéry&Royle, 2015;Huang et al., 2020). It can overcome errors stemming from unequal sampling efforts and produce reli- able and precise results that accommodate imperfect detec- tions (Dorazio & Rodriguez, 2012; Taylor-Rodriguez et al., 2017). The model was therefore suitable for investigating a community of species that differed in their probabilities of occurrence and detection.Wedivided camera-trap data into 7-day sampling occasions (N= 277; Bisi et al., 2019). The re- sponses of each species to the covariates were determined through mean and variance hyperparameters. We treated the original detection histories of species k at site i during occasion j (yijk) as Bernoulli random variables:


Logit(Cik) =Ck +Bl(Ck)×elevationi +Bl(C2k) ×longhousei +Bl(C3k)×roadi +Bl(C4k)×riveri


where B denotes estimated coefficients and l(Ψk) are the logit occupancies of species k. We ran seven chains with 100,000 iterations for the


Dorazio–Royle community model after a burn-in of 5,000. We generated 89% credible intervals as these have been suggested to be more stable than 95% credible intervals when sample sizes are ,10,000 (Huang et al., 2020). We predicted species occurrence as a function of covariates when there was a significant relationship (P,0.05) be- tween them. We then applied the estimated linear model parameters with identical scaling to calculate predictions, using three chains with 22,000 iterations after a burn-in of 2,000.We plotted the 6,000 posterior summaries of the pre- dictions for each species into a single array against the ori- ginal (i.e. unscaled) values of the covariate.


Analysis of species distributions 2


We assessed species distribution using occurrence coordi- nates (presence data only) of felids, which were pooled and overlain with GIS layers of habitat type to assess suitable areas for each felid species. We obtained the GIS layer for terrestrial ecoregions from The Nature Conservancy (TNC, 2020) and defined five habitat types: (1) lowland forest, (2) lower montane forest, (3) peat swamp forest, (4) mangrove forest and (5) tropical heath forest. We did not assess oil palm plantations as potential parts of species ranges. The GIS layers were categorized and clipped with the Sarawak map to a cell size of c. 1 km2 (Jennings et al.,


Oryx, 2023, 57(2), 252–261 © The Author(s), 2022. Published by Cambridge University Press on behalf of Fauna & Flora International doi:10.1017/S0030605321001484


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140