search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
172


moistened with sterile saline (Copan Diagnostics, Murrieta, CA). Set A included swabs collected from 10 single-use disposable stethoscopes directly from the box prior to use (clean stetho- scopes), 20 single-use disposable stethoscopes in-use in inpatient rooms (patient-room stethoscopes), and 20 stethoscopes being carried by physicians, nurses, and respiratory therapists (practi- tioner stethoscopes). Because low levels of microbial DNA are ubiquitous and bacterial DNA derived from collection instru- ments, reagents or the environment can confound microbiome studies,10,11 a set of background controls comprised of swabs moistened with saline (collected in parallel with the stethoscope sampling) were obtained on each collection date (n=20). Swabs were stored at −80°C.


Standardized cleaning method (set B)


We sampled 10 additional ICU practitioner stethoscopes using the procedure described above, following which stethoscope diaphragms were cleaned with a hydrogen peroxide wipe (hydrogen peroxide 1.4%; Clorox Healthcare, Oakland, CA) for 60 seconds and allowed to dry. Stethoscopes were then swabbed again using the same protocol.


Practitioner preferred cleaning method (set C)


An additional 20 practitioner stethoscopes were collected. To ensure that the pre-cleaning swab would not affect the post- cleaning communities, the stethoscope diaphragm was sampled as described above, but only the left half of the diaphragm was swabbed. Stethoscopes were returned to the practitioner, and they were instructed to clean their stethoscopes using the method they usually would use to clean it between patients. Practitioners cleaned their stethoscopes with hydrogen peroxide wipes (n=14), alcohol swabs (70% isopropyl alcohol; Coviden-Webcol, Mans- field, MA) (n=3), or bleach wipes (sodium hypochlorite 0.55%; Clorox Healthcare) (n=3), and duration of cleaning was deter- mined by practitioner preference. Once the diaphragm was visibly dry, the right half of the diaphragm was then swabbed to capture post-cleaning bacterial communities.


Bacterial extraction


Swabs were cut directly into PowerSoil beadbeater tubes (MoBio, Quagen, Venlo, Netherlands). DNA was extracted using the PowerSoil DNA kit (MoBio), according to the manufacturer’s instructions except for an additional 10-minute, 95°C incubation step to improve DNA yield from hard-to-lyse bacteria. DNA was stored at −20°C.


Bacterial amplification sequencing and analysis


Extracted DNA was amplified in triplicate 25-µL reactions using barcode-labeled primers targeting the bacterial 16S rRNA gene variable regions 1 and 2 (V1V2), employing previously described polymerase chain reaction (PCR) primers and protocols.12,13 The PCR primers target sequences that are conserved among bacteria, whereas the region amplified is not conserved and provides sequence-based information for bacterial identification. Samples were purified using bead purification, quantified using PicoGreen (Fisher Scientific, Waltham, MA), normalized to 5 ng/μL per sample, pooled, and subjected to deep sequencing on the Illumina MiSeq platform. Clean swabs moistened in sterile saline and dry clean swabs were run in parallel as controls for instrument- or


Vincent R. Knecht et al


reagent-derived background sequences. Using the QIIME 1.91 pipeline,14 sequences were clustered based on 97% similarity into de novo operational taxonomic units (OTUs), which serve as the basic taxonomic unit for subsequent analysis. To identify the bacteria, OTUs were aligned to the Greengenes reference database of bacterial sequences. Stethoscope set C was also amplified using primers targeting the 16S rRNA gene V4 region15 and was sequenced and analyzed using the same protocol. Sequences aligning with Streptophyta, which represent chloroplast DNA, were removed from the analysis.16 Bacterial DNA was quantified using 2 methods. First, the


amount of amplification product generated by bar-coded PCR primer amplification during library preparation was used to estimate the relative amount of contamination in pre- and post- cleaning specimens, as previously described.17 In addition, 16S rRNA gene qPCR was carried out on a subset of samples using primers and protocols previously described.18 To identify bacteria (taxa) that are commonly associated


with HAIs, we specifically queried sequences from practitioner stethoscope samples of sets A and C for the presence of Staphy- lococcus, Pseudomonas, Acinetobacter, Clostridium, Enterococcus, Stenotrophomonas, and Burkholderia genera. The 16S rRNA gene sequences assigned to these genera in the QIIME pipeline were then manually aligned to the NCBI 16S rRNA sequence database with BLAST to confirm genus identity and, if possible, to generate species-level assignment. Because any 16S rRNA gene primer set may have unrecognized biases,19,20 we did this using both V1V2 and V4 sequences of the 16S rRNA gene. Any sample with ≥10 sequence reads aligning to the genus was considered a positive hit.


Statistical analysis


Figures were generated and statistical tests carried out using R version 3.2.3 software (R Foundation for Statistical computing, Vienna, Austria). Richness (number of taxa) and alpha diversity (within-community measure that encompasses both richness and evenness) was carried out after sequence rarefaction to 1,000 reads.21 Alpha diversity was calculated using the vegan package. The pairwise Wilcoxon rank-sum test was used to compare between-group differences for the alpha diversity analysis. We analyzed β diversity (a metric of between-community differences) was analyzed by unweighted and weighted UniFrac using the QIIME pipeline, and was used to perform principal coordinate analysis (PCoA).14,22 The adonis function in the vegan package was used to test for statistical significance between groups of communities using PERMANOVA in the β diversity analyses. The Wilcoxon rank-sum test was used to examine the differences between groups of communities in quantification, richness and diversity, and the Student t test was used for the pre- and post- cleaning 16S quantification differences.


Results Stethoscope microbiome community analysis


We first estimated total bacterial contamination of practitioner stethoscopes, patient-room stethoscopes, clean unused stetho- scopes, and background controls in set A according to the quantity of 16S amplicon post-PCR amplification (Fig. 1(A)). Practitioner stethoscopes had significantly higher 16S amplicon concentration compared to both the patient-room and clean stethoscopes (P=.035 and P=.004, respectively; Wilcoxon rank- sum test). Patient-room stethoscopes had significantly higher


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156