search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Infection Control & Hospital Epidemiology


patients with CDI. Previous studies have demonstrated that exposure times of 10 minutes or longer may provide sufficient UV-C dosing to reduce C. difficile spores by 2 logs or more.18,20–21 Our study has some limitations. We assessed contamination of


the radiology department with a single point-prevalence culture survey. For the evaluation of reduction on carriers, we evaluated only 3 pathogens and conducted testing in only 1 type of pro- cedure room. Results may differ in other types of rooms or in other outpatient settings. We did not evaluate the efficacy of the devices in reducing real-world contamination on radiology tables. However, we included an organic load to simulate organic material that might be present on surfaces and placed the carriers at multiple sites on the table. Finally, we focused on decontami- nation of the procedure table based on the presumption that this would be the area most likely to become contaminated and contribute to patient-to-patient transmission. However, we can- not exclude the possibility that other sites in the procedure room might also become contaminated and contribute to transmission.


Acknowledgments. We would like to thank the staff of the Radiology Department at the Cleveland VA Medical Center for assistance with testing and the companies that provided temporary use of ultraviolet light devices for the study.


Financial support. Department of Veterans Affairs (Merit Review grant to C.J.D.)


Conflicts of interest. C.J.D. has received research funding from GOJO, Pfizer, Clorox, Avery Dennison, and Boehringer Laboratories. All other authors report no conflicts of interest relevant to this article.


References


1. Nerandzic MM, Cadnum JL, Pultz MJ, Donskey CJ. Evaluation of an automated ultraviolet radiation device for decontamination of Clostridium difficile and other healthcare-associated pathogens in hospital rooms. BMC Infect Dis 2010;10:197.


2. Rutala WA, Gergen MF, Weber DJ. Room decontamination with UV radiation. Infect Control Hosp Epidemiol 2010;31:1025–1029.


3. Havill NL, Moore BA, Boyce JM. Comparison of the microbiological efficacy of hydrogen peroxide vapor and ultraviolet light processes for room decontamination. Infect Control Hosp Epidemiol 2012;33:507–512.


4. Zeber JE, Pfeiffer C, Baddley JW, et al. Effect of pulsed xenon ultraviolet room disinfection devices on microbial counts for methicillin-resistant Staphylococcus aureus and aerobic bacterial colonies. Am J Infect Control 2018;46:668–673.


5. Nerandzic MM, Thota P, Sankar C T, et al. Evaluation of a pulsed xenon ultraviolet disinfection system for reduction of healthcare-associated pathogens in hospital rooms. Infect Control Hosp Epidemiol 2015;36:192–197.


6. Marra AR, Schweizer ML, Edmond MB. No-touch disinfection methods to decrease multidrug-resistant organism infections: a systematic review and meta-analysis. Infect Control Hosp Epidemiol 2018;39:20–31.


7. Anderson DJ, Chen LF, Weber DJ, et al. Enhanced terminal room disinfection and acquisition and infection caused by multidrug-resistant organisms and Clostridium difficile (the Benefits of Enhanced Terminal


163


Room Disinfection study): a cluster-randomised, multicentre, crossover study. Lancet 2017;389:805–814.


8. Anderson DJ, Moehring RW, Weber DJ, et al. Effectiveness of targeted enhanced terminal room disinfection on hospital-wide acquisition and infection with multidrug-resistant organisms and Clostridium difficile:a secondary analysis of a multicentre cluster randomised controlled trial with crossover design (BETR Disinfection). Lancet Infect Dis 2018;18:845–853.


9. Rutala WA, Kanamori H, Gergen MF, et al. Enhanced disinfection leads to reduction of microbial contamination and a decrease in patient colonization and infection. 2018;39:1118–1121.


Infect Control Hosp Epidemiol.


10. Mathew JI, Cadnum JL, Sankar T, Jencson AL, Kundrapu S, Donskey CJ. Evaluation of an enclosed ultraviolet-C radiation device for decontamina- tion of mobile handheld devices. Am J Infect Control 2016;44:724–726.


11. Shaikh AA, Ely D, Cadnum JL, et al. Evaluation of a low-intensity ultraviolet-C radiation device for decontamination of computer key- boards. Am J Infect Control 2016;44:705–707.


12. Alhmidi H, Cadnum JL, Piedrahita CT, John AR, Donskey CJ. Evaluation of an automated ultraviolet-C light disinfection device and patient hand hygiene for reduction of pathogen transfer from interactive touchscreen computer kiosks. Am J Infect Control 2018;46:464–467.


13. Simmons S, Dale C Jr, Holt J, Passey DG, Stibich M. Environmental effectiveness of pulsed-xenon light in the operating room. Am J Infect Control. 2018;46:1003–1008.


14. El Haddad L, Ghantoji SS, Stibich M, Fleming JB, Segal C, Ware KM, Chemaly RF. Evaluation of a pulsed xenon ultraviolet disinfection system to decrease bacterial contamination in operating rooms. BMC Infect Dis 2017;17:672.


15. Jencson AL, Cadnum JL, Wilson BM, Donskey CJ. Spores on wheels: wheelchairs are a potential vector for dissemination of pathogens in healthcare facilities. Am J Infect Control (in press).


16. Murray SG, Yim JWL, Croci R, Rajkomar A, Schmajuk G, Khanna R, Cucina RJ. Using spatial and temporal mapping to identify nosocomial disease transmission of Clostridium difficile. JAMA Intern Med 2017;177:1863–1865.


17. Cadnum JL, Shaikh AA, Piedrahita CT, et al. Relative resistance of the emerging fungal pathogen Candida auris and other Candida species to killing by ultraviolet light. Infect Control Hosp Epidemiol 2018;39:94–96.


18. Nerandzic MM, Donskey CJ. Sensitizing Clostridium difficile Spores with germinants on skin and environmental surfaces represents a new strategy for reducing spores via ambient mechanisms. Pathog Immun 2017;2:404–421.


19. Cadnum JL, Tomas ME, Sankar T, et al. Effect of variation in test methods on performance of ultraviolet-C radiation room decontamination. Infect Control Hosp Epidemiol 2016;37:555–560.


20. Boyce JM, Farrel PA, Towle D, Fekieta R, Aniskiewicz M. Impact of room location on UV-C irradiance and UV-C dosage and antimicrobial effect delivered by a mobile UV-C light device. Infect Control Hosp Epidemiol 2016;37:667–672.


21. Masse V, Hartley MJ, Edmond MB, Diekema DJ. Comparing and optimizing ultraviolet germicidal irradiation systems use for patient room terminal disinfection: an exploratory study using radiometry and commercial test cards. Antimicrob Resist Infect Control 2018;7:29.


22. Tande BM, Pringle TA, Rutala WA, Gergen MF, Weber DJ. Under- standing the effect of ultraviolet light intensity on disinfection performance through the use of ultraviolet measurements and simulation. Infect Control Hosp Epidemiol 2018;39:1122–1124.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156