search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
infection control & hospital epidemiology july 2018, vol. 39, no. 7 original article


An Outbreak of Streptococcus pyogenes in a Mental Health Facility: Advantage of Well-Timed Whole-Genome Sequencing Over emm Typing


Sarah M. Bergin, FRCPath;1,a Balamurugan Periaswamy, PhD;2,a Timothy Barkham, FRCPath;1,3 Hong Choon Chua, MMed (Psych);4 Yee Ming Mok, MMed(Psych);4 Daniel Shuen Sheng Fung, MMed(Psych);4 Alex Hsin Chuan Su, MMed(Psych);4 Yen Ling Lee, BSc;2 Ming Lai Ivan Chua, BSc;2 Poh Yong Ng, MSc;2 Wei Jia Wendy Soon, PhD;2 Collins Wenhan Chu, MSc;2 Siyun Lucinda Tan, MRCP;5 Mary Meehan, PhD;6 Brenda Sze Peng Ang, MPH;7,8 Yee Sin Leo, MPH, FAMS, FRCP;7,8,9,10 Matthew T. G. Holden, PhD;11 Partha De, MSc, FRCPath;1,8 Li Yang Hsu, MPH;7,9 Swaine L. Chen, MD, PhD;2,10,b Paola Florez de Sessions, PhD;2,b Kalisvar Marimuthu, FAMS, MRCP7,10,b


objective. We report the utility of whole-genome sequencing (WGS) conducted in a clinically relevant time frame (ie, sufficient for guiding management decision), in managing a Streptococcus pyogenes outbreak, and present a comparison of its performance with emm typing.


setting. A 2,000-bed tertiary-care psychiatric hospital.


methods. Active surveillance was conducted to identify new cases of S. pyogenes. WGS guided targeted epidemiological investigations, and infection control measures were implemented. Single-nucleotide polymorphism (SNP)–based genome phylogeny, emm typing, and multilocus sequence typing (MLST) were performed. Wecompared the ability ofWGSand emm typing to correctly identify person-to-person transmission and to guide the management of the outbreak.


results. The study included 204 patients and 152 staff. We identified 35 patients and 2 staff members with S. pyogenes. WGS revealed polyclonal S. pyogenes infections with 3 genetically distinct phylogenetic clusters (C1–C3). Cluster C1 isolates were all emm type 4, sequence type 915 and had pairwise SNP differences of 0–5, which suggested recent person-to-person transmissions. Epidemiological investigation revealed that cluster C1 was mediated by dermal colonization and transmission of S. pyogenes in a male residential ward. Clusters C2 and C3 were genomically diverse, with pairwise SNP differences of 21–45 and 26–58, and emm 11 and mostly emm120, respectively. Clusters C2 and C3, which may have been considered person-to-person transmissions by emm typing, were shown by WGS to be unlikely by integrating pairwise SNP differences with epidemiology.


conclusions. WGShad higher resolution than emm typing in identifying clusters with recent and ongoing person-to-person transmissions, which allowed implementation of targeted intervention to control the outbreak.


Infect Control Hosp Epidemiol 2018;39:852–860


Streptococcus pyogenes is a human pathogen causing a range of illnesses from pharyngitis and impetigo to necrotizing fasciitis and streptococcal toxic shock syndrome. The epithelial sur- faces of the throat and skin are the principal sites of asymp- tomatic S. pyogenes colonization and the sites of most new S. pyogenes acquisition and transmission.1,2


Healthcare-associated outbreaks of invasive S. pyogenes infections in both acute-care3–5 and long-term care facilities6–12 have been well described. Between 5% and 12% of cases of severe S. pyogenes infection are healthcare associated.1,4,5 The control of outbreaks in both acute- care and long-term care facilities is challenging, partly


Affiliations: 1. Department of Laboratory Medicine, Tan Tock Seng Hospital, Singapore; 2. Genome Institute of Singapore, Singapore; 3. Yong Loo Lin


School of Medicine, National University of Singapore, Singapore; 4. Institute of Mental Health, Singapore; 5. National Skin Center, Singapore; 6. Irish Menin- gitis and Sepsis Reference Laboratory, Temple Street Children’s University Hospital, Dublin, Ireland; 7. Department of Infectious Diseases, Institute of Infectious Diseases and Epidemiology, Tan Tock Seng Hospital, Singapore; 8. Lee Kong Chien School of Medicine, Nanyang Technological University, Singapore; 9. Saw Swee Hock School of Public Health, National University of Singapore, Singapore; 10. Yong Loo Lin School of Medicine, National University


of Singapore, Singapore; 11. University of St Andrews, St Andrews, Scotland. a First authors of equal contribution. b Authors of equal contribution.


© 2018 by The Society for Healthcare Epidemiology of America. All rights reserved. 0899-823X/2018/3907-0013. DOI: 10.1017/ice.2018.101 Received January 19, 2018; accepted April 8, 2018; electronically published May 9, 2018


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144