search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
800 infection control & hospital epidemiology july 2018, vol. 39, no. 7


Correlation of Antibiotic Utilization With Mortality and Days of Significant Illness


Hospital 30-day mortality rates ranged from 0 to 9.5%, with a median of 2.1% overall. Days of significant illness ranged from 0 to 115 days per 1,000 neutropenic days (Table 1). The Spearman correlation coefficients between specific antibiotic groups and mortality rates and DSIs are shown in Table 2. Mortality was not correlatedwith any antibiotic group. Days of significant illness were moderately positively correlated with gram-positive antibiotic use and moderately negatively corre- lated with antipseudomonal antibiotic use; no correlation with carbapenems was identified.


Hospital Rates of Antibiotic Utilization


Overall, 90.1% of patients received at least 1 day of a broad- spectrum antipseudomonal or gram-positive antibiotic; the proportion by hospital ranged from 64.7% to 100% for anti- pseudomonal antibiotic receipt and from 50% to 100% for gram-positive antibiotic receipt. Composite unadjusted anti- pseudomonal DOTs per 1,000 neutropenic days ranged from 424 to 1012 (median, 731); for carbapenems specifically, DOTs ranged from 415 to 987 (median, 719); and for gram-positive


Time to Engraftment (median, d)


27 7


26 12 15 25 17 19 8


13 22 4 2


20 1 5 3


11 18 9


24 14 10


Full cohort 770 NOTE. DSI, days of significant illness.


21.7 23.7 23.7 19.3 21.2 16.8 20.7 18.2 15.8 22.7 26.7 19.7 19.2 22.7 18.3 13.8 24.7 15.8 16.8 24.7 20.7 24.7 23.7 15.8 19.2 21.7 17.8 19.7


antibiotics, DOTs varied from 148 to 824 (median, 399). In the negative binomial models, adjusted hospital DOTs varied minimally from unadjusted estimates, and the scope of the variability across hospitals was similar (Figures 2 and 3). As demonstrated in Figure 2a, the choice of antipseudomonal agents varied across hospitals. In contrast, gram-positive antibiotic utilization was driven primarily by vancomycin prescribing (Figure 3). The sensitivity analysis restricting the evaluation to only the later years did not meaningfully change the rates of utilization between hospitals, nor did the exclusion of DSIs from the adjusted models.


Drivers of Variation in Antibiotic Utilization


In the base ME models that included only hospital-level ran- dom effects, the estimated variance is statistically significantly different from zero, suggesting significant variation in anti- biotic utilization across hospitals. As indicated by a higher point estimate of variance, this variability is more pronounced for gram-positive antibiotics and carbapenems compared to antipseudomonal antibiotics (Table 3). In each of the 3 mod- els, the point estimate of variance decreased with the addition of patient- and hospital-level factors. However, despite the


table 1. Descriptive Characteristics of 27 Hospitals Included in the Analysis Hospital No. No. of Patients


Age


21 16 23 6


13 14 15 16 16 17 17 18 19 19 21 21 22 22 23 24 28 28 34 39 40 40 40 48 50 61 65


(median, y) 12.4


10.4 8.5


13.2 11.5 10.7 8.8


10.1 10.4 10.8 9.6 7.3


12.0 9.6 9.2 8.6 9.1 6.8


10.7 6.6 9.7 8.5 7.7 8.7


11.4 10.0 8.6 9.6


44 31 29 47 48 43 43 50 33 36 37 44 38 29 48 56 29 41 33 31 34 50 44 43 37 43 41


Sex


(female, %) 41


Race


(nonwhite, %) 18


35 0


18 0


38 30


9.2


36 14 30 11 13 21 29


8.7


22 64 41 25 56 18 18 10 15 0


36 22


DSI/1,000


Neutropenic Days 89


97 0


20 83 74 27 0 6 0


14 72 0


115 94 22 51 55 39 10 11 63 24 55 6


48 33 39


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144