infection control & hospital epidemiology july 2018, vol. 39, no. 7 original article
Noninfectious Hospital Adverse Events Decline After Elimination of Contact Precautions for MRSA and VRE
Elise M. Martin, MD, MS;1 Brandy Bryant, MPH;2 Tristan R. Grogan, MS;3 Zachary A. Rubin, MD;1 Dana L. Russell, MPH;4 David Elashoff, PhD;3 Daniel Z. Uslan, MD, MBA, FIDSA, FSHEA1
objective. To evaluate the impact of discontinuing routine contact precautions (CP) for endemic methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) on hospital adverse events.
design. Retrospective, nonrandomized, observational, quasi-experimental study. setting. Academic medical center with single-occupancy rooms. participants. Inpatients.
methods. We compared hospital reportable adverse events 1 year before and 1 year after discontinuation of routine CP for endemic MRSA and VRE (preintervention and postintervention periods, respectively). Throughout the preintervention period, daily chlorhexidine gluconate bathing was expanded to nearly all inpatients. Chart reviews were performed to identify which patients and events were associated with CP for MRSA/VRE in the preintervention period as well as the patients that would have met prior criteria for MRSA/VRE CP but were not isolated in the postintervention period. Adverse events during the 2 periods were compared using segmented and mixed-effects Poisson regression models.
results. There were 24,732 admissions in the preintervention period and 25,536 in the postintervention period. Noninfectious adverse events (ie, postoperative respiratory failure, hemorrhage/hematoma, thrombosis, wound dehiscence, pressure ulcers, and falls or trauma) decreased by 19% (12.3 to 10.0 per 1,000 admissions, P=.022) from the preintervention to the postintervention period. There was no significant difference in the rate of infectious adverse events after CP discontinuation (20.7 to 19.4 per 1,000 admissions, P=.33). Patients with MRSA/VRE showed the largest reduction in noninfectious adverse events after CP discontinuation, with a 72% reduction (21.4 to 6.08 per 1,000 MRSA/VRE admissions; P<.001).
conclusion. After discontinuing routine CP for endemic MRSA/VRE, the rate of noninfectious adverse events declined, especially in patients who no longer required isolation. This suggests that elimination of CP may substantially reduce noninfectious adverse events.
Infect Control Hosp Epidemiol 2018;39:788–796
Although both the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America still recommend contact precautions (CP) to decrease the trans- mission of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) in acute-care hospitals, recent data have indicated a need to question whe- ther this should remain the standard of care.1–8 Several institutions have eliminated routine CP for MRSA
and VRE; instead, they solely employ horizontal infection prevention strategies to decrease spread of resistant organisms, such as improved hand hygiene and targeted or universal decolonization with products like chlorhexidine gluconate
(CHG).3,6–8 Three studies specifically looking at infectious outcomes of removing routine CP have reported no increase in infectious complications, such as device-associated infections, MRSA acquisitions, MRSA environmental contamination, and healthcare-associated infections with MRSA and/or VRE.6–8 Although some data support CP in combination with other horizontal strategies, data on gowns and gloves alone are lacking.3,9–20 Multiple studies have shown potential patient harms asso-
ciated with the use of CP, including increased preventable adverse events, such as falls, pressure ulcers, medication administration errors, and deep vein thrombosis.21–23 CP have
Affiliations: 1. Division of Infectious Diseases, David Geffen School of Medicine at UCLA, Los Angeles, California; 2. Department of Quality Management,
UCLA Health, Los Angeles, California; 3. Department of Medicine Statistics Core, David Geffen School of Medicine at UCLA, Los Angeles, California; 4. Clinical Epidemiology and Infection Prevention, UCLA Health, Los Angeles, California.
PREVIOUS PRESENTATION. The data in this manuscript were presented in part (Poster no. 616) at the SHEA Spring 2016 conference: Science Guiding Prevention, in Atlanta, Georgia, on May 20, 2016.
© 2018 by The Society for Healthcare Epidemiology of America. All rights reserved. 0899-823X/2018/3907-0004. DOI: 10.1017/ice.2018.93 Received January 8, 2018; accepted March 10, 2018; electronically published May 10, 2018
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144