Open cell is extremely vapour open and will allow moisture vapour to pass freely through it allowing the building to breathe naturally.
Because spray foam can create an air-tight yet breathable envelope, it has made it the insulation material of choice in new build homes built to Passivhaus-type standards.
Unlike the urethane foams of 20 years ago, modern spray foams such as Icynene Foam Lite use water as the blowing agent.
Air leakage can be eliminated by the introduction of an air barrier. These can take many forms but must be installed with great care if they are to perform as desired. Real world experience also shows that the more difficult a component is to install, the less likely it is to be installed correctly!
The modern alternative is spray foam insulation, which is applied using a pressurised gun system. Here, foams are applied as a two-component mixture that come together at the tip of a gun forming a foam that expands 100-fold within seconds of application, sealing all gaps, service holes and hard to reach spaces, virtually eliminating cold bridging and air leakage.
When selecting spray applied insulation it is important to understand a number of factors: Unlike the urethane foams of 20 years ago, modern spray foams such as Icynene Foam Lite use water as the blowing agent. This means that the reaction between the two components produces CO2 which causes the foam to expand.
As Foam Lite expands, the cells of the foam burst and the CO2 is replaced by air. Consequently, from an environmental perspective, Icynene has a Global Warming Potential (GWP) of 1 and an Ozone Depletion Potential (ODP) of 0 (Zero). Icynene does not, therefore emit any harmful gases once cured.
OPEN CELL OR CLOSED CELL COMPOSITION
Spray foam insulation can be either open or closed cell in composition. Open cell is extremely vapour open and will allow moisture vapour to pass freely through it allowing the building to breathe naturally. Open cell foam will not soak up or ‘wick’ water.
Closed cell foams tend to be much less vapour permeable than open cell and are considerably more rigid and hard. They resist the passage
ICYNENE
TEL: 07851 854860 29
Insulation materials work by slowing conductive heat flow and to a lesser extent, convective heat flow.
of liquid water and although not entirely waterproof, will prevent it from passing through a structure for a considerable period of time. Closed cell foams often have a greater thermal resistance than open cell foams.
Chlorofluorocarbons (CFCs), which were developed in the 1930’s and frequently used in spray insulation many years ago, are recognised as the main cause of the ozone depletion. CFC’s can last for 100 years and 1 CFC molecule can result in the loss of 100,000 ozone molecules. In light of this, when spray applied insulation is used it is important to verify that the material does not contain any chemicals that may potentially cause damage to the environment.
WHERE DOES SPRAY APPLIED INSULATION FIT?
Spray applied insulation tends to be more expensive than conventional fibre based and rigid board type insulation materials and is usually applied by specialist contractors using bespoke equipment. However, its speed of installation, minimal waste and its ability to perform in difficult to treat applications and the fact that it can be injected into voids that would otherwise require invasive tear-out of surfaces, means spray foam is a cost-effective solution when compared to rigid board type insulation for both refurbishment and new build projects.
Open cell spray insulation has been used on many historic buildings where its non-invasive installation methods have allowed the continued occupation of the building with the minimal of disruption to users and negligible impact to the fabric or the breathability of the structure.
At the other end of the scale, the fact that spray foam insulation can create air-tight envelope has also made it the insulation material of choice in new build homes built to Passivhaus-type standards.
*Footnote: As levels of air tightness increase, consideration should be given to the introduction of efficient mechanical ventilation
WWW.ICYNENE.CO.UK
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56