FIBER LASERS
dominate choice for 3D power bed manufacturing machines. The requirement to produce 40–60 μm spot sizes with a consistent melt pool, and rapid response times is ideally accomplished with IPG’s single-mode fiber lasers. The single- mode lasers are also widely used in the high-speed cutting of thin materials required in the battery industry as well as producing micron-sized holes in a variety of applications. The multi-mode version with their CW power and high modula- tion frequency continue to gain substantial market share in the sensor industry, medical device industry and computer industries. The cutting of medical stents, welding of pressure transducers and the welding of stainless steel razor blades are examples of high-volume applications that have switched to fiber lasers.
Production Acceptance of QCW Lasers The QCW fiber lasers were developed for those applica-
tions that require a pulse of high-peak laser energy for laser welding, cutting or drilling with the added ability to operate in the continuous mode for additional capability. The lasers can be switched dynamically between the two modes of operation and power levels on the fly. The product range is from a 1.5 kW peak with a 250-W CW power to a 20-kW peak with CW power to 2000 W with several other models
The primary application of pulsed fiber lasers is for marking
in between. The applications for this product include exten- sive micro welding, cutting and drilling applications at the lower power levels with extensive acceptance by the medi- cal device, computer, cell phone and battery industries. The higher peak power offerings such as 20 kW/2000 is rapidly replacing YAG lasers in the aerospace industry for the very demanding drilling of thousands of cooling holes required in the manufacture of the modern jet engines. These lasers drill higher quality holes at much higher speeds while meet- ing the demanding specifications consistently. They are a direct replacement for pulse YAG lasers on spot-welding applications requiring a high-peak pulse as well as operating
84
AdvancedManufacturing.org | February 2016
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116