of short-pulsed lasers with very high peak power and pulse durations from the picosecond to the nanosecond regime. Common to all of these lasers is that they are excited with telecom-grade highly reliable laser-pump diodes and a gain medium of Ytterbium active fiber. The multi-kilowatt lasers are manufactured with a modular con- cept. For example, a 20-kW laser is manufactured with multiple 1200-W modules all combined into a single 100-μm output fiber. This allows the manufacturing of these lasers, with parallel combining to higher and higher output powers without stress- ing the components or decreasing the reliability. The lower powered CW fiber lasers are manufactured with a single module and are available as air-cooled devices. The pulsed-fiber lasers are typically manufactured with a fiber laser or pump diode delivered through a fiber amplifier. These pulsed units are also available with emission wavelengths in the UV and Green ranges by utilizing frequency doubling and quadrupling crystals.
Production Acceptance of Continuous Fiber Lasers
The acceptance of fiber lasers for
production applications in the auto- motive industry has been rapid and accelerating. Fueled by their ease of integration with industrial robots, the elimination of He as a welding cover gas and the excellent beam quality, all major automotive companies and their suppliers worldwide have adopted fiber lasers to meet their very demand- ing production requirements. The industry has strived to manufacture lighter weight and safer vehicles. This has resulted in numerous applications for laser processing. The increasing utilization of high-strength steels and aluminum into vehicle designs and
the introduction of lightweight automatic transmissions has proven to be fertile ground for the adoption of fiber-laser technology. The fiber lasers used in automotive produc- tion are typically 2–6 kW with the power dependent upon
From simple keyways to multiple, special profiles, Leistritz Polymat and Polyjet machines have the features to improve quality, shorten cycletimes and minimize set-ups.
Polymat series of CNC keyseating machine
Leistritz Advanced Technologies Corp.
165 Chestnut Street, Allendale, NJ 07401 201 934-8262
www.leistritzcorp.com
February 2016 |
AdvancedManufacturing.org 81
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116