search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Features and technology / Features in general


CO and HC reduction methods


Oxidation catalysts The reduction of CO is also predominantly achieved using catalytic systems. Oxidation catalysts are used for CO reduction, but again the purity of the fuel gas is a major factor.


Using oxidation catalysts for the reduction of unburned hydro- carbons is currently not possible because the required reaction temperature cannot be achieved. Such catalysts are available for


the reduction of formaldehyde (H2CO) only, but again the purity of the fuel gas is a major factor as mentioned above.


Three way catalysts Three way catalysts require a very precise control of the air-fuel ratio at stoichiometric conditions to enable extraordinarily high conversion ratios (NOx app. 99 %, CO app. 95 %). In addition the high exhaust gas temperatures of rich burn engines allow a significant HC reduction and low formaldehyde emissions.


Please note The installation of any catalytic system is only possible when using very clean fuel gases (e.g., natural gas, or other gases if adequately pre-cleaned). The allowance for trace components such as sulfur, halogens, or heavy metals is very low (see fuel specifications). When using fuels such as sewage gas or landfill gas, the removal of Volatile Organic Silicone Compounds (VOSC) is very important, as these VOSCs would otherwise deactivate the surface of the catalyst in a very short period of time. Using activated carbon filters in this system is a very effective means of avoiding this problem.


The higher conversion rate demand of the catalytic system at rich burn engines is an additional hurdle to use this technology for sewage gas, biogas or landfill gas. Three way catalysts are state of the art technology for natural gas only.


Non-catalytic post combustion of CO, HC and Formaldehyde – CL.AIR* Because catalytic systems bear numerous risks in operation with biogases such as landfill gas or sewage gas, the technology team developed a non-catalytic system for the reduction of CO, THC (Total Hydro Carbons) and formaldehyde more than 15 years ago.


This system, called CL.AIR, uses the reaction heat from the post- combustion of these compounds to maintain the required oxidation temperature (above 700°C / 1,300°F). This regenerative system uses a ceramic storage mass to preheat the exhaust gases to the


required temperature for the oxidation of CO, HC and H2CO into CO2 and H2O. The heat from this reaction is then transferred to a second storage mass. By switching the direction of flow using a


four-way valve, the second storage mass then releases heat to the exhaust gas, and the cycle repeats.


Benefits


• Insensitive against impurities in the fuel gas • No problems with build-up of deposits • Very low levels of emission (CO and THC < 200 mg/m³,


H2CO < 20 mg/m³ @ 5 % O2) • Reliable fulfillment of emission levels over life time • Very low maintenance costs. • Additional thermal output (increase of exhaust gas temperate by 20 – 30°C)


Status GE’s Jenbacher CL.AIR* system was developed in 1994 and has been installed in more than 250 landfill gas and biogas installations.


118


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200