search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Features and technology / Features in general


Special engine features Emission reduction


Basically there are three ways of reducing the main emission components NOx, carbon monoxide (CO) and unburned total hydrocarbons (THC) of combustion engines:


• Measures within the engine • Exhaust gas after treatment • Combination of both


The alternative concept is the so called lean-burn concept, where excess air in the combustion chamber allows already low NOx emissions without exhaust gas after treatment.


Lean-burn concepts typically exhibit NOx emissions in the range of NOx ~ 250mg/Nm³ (~ 0.6g / bhp_hr) without catalytic exhaust gas after treatment, the rich-burn concept shows significantly higher NOx emissions (NOx ~ 4 – 6,000 mg/Nm³) in the untreated exhaust gas. But with the help of a three way catalyst, significantly lower NOx emission levels (NOx < 50mg/Nm³ / ~0.1g/bhp_hr) in combination with very low CO and HC-emissions can be achieved. In addition this concept shows in general higher exhaust gas temperatures, which is beneficial for e.g. heat recovery and a better load response e.g. at transient loads. Rich-burn engines are due to the high combustion temperature at stoichiometric conditions limiting achievable specific output, respectively mean effective pressure which results in lower efficiency levels compared to lean-burn engines.


0.8 0.9 NOx 1.0 1.1 1.2 Total HC 1.3 1.4 1.5


Air fuel ratio (λ) CO


1.6 1.7 1.8 1.9 2.0 2.1


Another method used to achieving similar low levels of NOx in natural gas operation like at rich-burn engines is the combination of a Selective Catalytic Reduction (SCR) with lean-burn combustion. With this method, it is necessary to inject a controlled amount of


NOx reduction by exhaust gas after-treatment


In the case of very low limits for NOx there are two methods available. One is the so called Lambda = 1 or Rich Burn concept. Based on a very precise control of the air fuel ratio at stoichiometric conditions rich burn engines can achieve very low exhaust gas emissions for e.g. NOx, CO or THC by help of a three way catalyst with extraordi- nary high conversion ratios (NOx app. 99 %, CO app. 95 %).


urea in front of the catalyst to ensure the reduction of NOx to N2. This method provides the advantage of operating the engine in the lean-burn mode with an optimal air-fuel ratio, and hence high levels of efficiency and high mean effective pressures. This method is generally used in all greenhouse installations with CO2 fertilization.


The most widely used method for NOx reduction is lean burn concept, which is in Jenbacher gas engines called LEANOX*. While Jenbacher offers only lean-burn engines, Waukesha is able to offer both combustion control concepts for the VGF* and VHP* platform.


116


Emissions


(λ = 1 Concept)


NSCR


Lean combustion Misfiring


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200