This page contains a Flash digital edition of a book.
BIOTECHNOLOGY 69


Validating next-generation sequencing-based genetic tests


Frederick R. Blattner & Tim Durfee showcase software for auto- analysis of internal benchmarking controls.


A


s next-generation sequencing (NGS) makes genetic testing for a wide range of human diseases increasingly commonplace, facile methods for validating the efficacy of those tests are essential.


In the USA, federal regulatory standards embodied in the Clinical Laboratory Improvement Amendments (CLIA), for instance, are designed to ensure that these tests reliably achieve certain performance specifications in terms of accuracy, precision and analytical sensitivity and specificity.


To facilitate the validation process, the National Institute of Standards and Technology (NIST) through the Genome in a Bottle Consortium (GIAB) developed a highly curated set of genome-wide reference materials for the HapMap/1,000 Genomes CEU female, NA12878. Tese materials include BED and VCF files of


Fig. 1. DNASTAR’s dedicated data flow.


high confidence sequence regions and variant calls, respectively. NA12878 genomic DNA and a cell line are available (Coriell Institute), providing laboratories with an internal control for their processing and analysis pipeline. Comparing testing results to the GIAB call sets allows establishment of both the analytical performance for regulatory certification as well as the appropriate assembly thresholds to apply when considering potential variants in patient samples.


Computational challenge For clinical sequencing laboratories to efficiently leverage resources such as the GIAB call sets, assembly and analysis software must support the unique aspects of validation control processing.


For example, analyses should be restricted to the intersection between the GIAB high confidence regions and the target regions of the specific


test. Variant reporting should also match GIAB call set conventions wherever possible to avoid underestimating the accuracy.


Additionally, data processing and statistical calculations should be rapid, automated and reported in an easily interpreted form. Most clinical laboratories lack the bioinformatics expertise needed to build software pipelines capable of handling these challenges.


Software workflow DNASTAR has developed a dedicated workflow within its Lasergene Genomics suite for clinical sequencing labs to utilise the NA12878 reference materials to validate their NGS-based genetic tests (Fig. 1.). Within the SeqMan NGen wizard, users specify: NGS reads from their processed NA12878 sample; the human genome reference version (NA12878 reference materials are in GRCh37 coordinates; an intersected BED file between their targeted regions and


www.scientistlive.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92