This page contains a Flash digital edition of a book.
Tech Front


fi rst challenge of using lithium for the battery’s anode. Other problems using lithium are that lithium anodes are highly chemically reactive with the electrolyte and they also heat up upon contact. By building a protective layer of interconnected


Trends. Analysis. Forecasts. Your source for everything 3D printing


carbon domes on top of their lithium anode, the Stanford re- search solved these issues, using a layer that the team called nanospheres. This nanosphere layer looks like a honeycomb, with a fl exible, uniform and nonreactive fi lm that protects the unstable lithium. The carbon nano- sphere wall is just 20-nm thick. “The ideal protective layer for a lithium metal anode needs to be chemically stable to protect against the chemical reactions with the electrolyte and mechanically strong to withstand the expansion of the lithium during charge,” said Cui, who is a member of the Stanford Institute for Materials and Energy Sciences at SLAC National Accelerator Laboratory (formerly the Stanford Linear Accelerator Center). For more information, see http://tinyurl.com/ MetalAnodes or visit https://www6.slac. stanford.edu. ME


Solid-State Battery Design Doubles Energy Density


B ■


Undisputed industry-leading report for 19 consecutive years ■


Estimates and forecasts based on years of hard data ■ Input and analysis from the largest group of experts worldwide


Order your report today! wohlersassociates.com


32 ManufacturingEngineeringMedia.com | October 2014 ohlersManuEng.indd 2 2/19/14 12:20 PM


attery startup Sakti3 Inc. (Ann Arbor, MI) announced Aug. 20 that it has produced a battery cell on fully scalable equipment that is said to achieve more than 1100 Watt hours per liter (Wh/l) in volumetric density. A University of Michigan spin-off, Sakti3 has been developing solid-state lithium batteries that could fi nd use in a variety of applications ranging from hand-held devices to electric cars. Sakti3 said the company’s latest development translates into more than double the usage time for wearable devices like smartwatches, to 3.5 hr to more than 9 hr, and with an EV like a Tesla Model S, driving distances could be extended from 265 to 480 miles (426–772 km). The company’s solid-state batteries use vacuum deposition technology and


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164