Laser Drilling
plished by using a high-power laser with a focused spot size of 0.002–0.030" (0.05–0.75 mm). “To support the designer's goal for greater engine efficiency, Laserdyne had to develop new capabilities,” said Barry. “There are various shaped holes— fan tail and race track—that are designer buzzwords, and hole shapes and angle can vary across the surface.”
An expensive aerospace turbine engine component drilled with Prima Power Laserdyne system requires the highest-precision holemaking operations.
Use of fiber lasers for producing turbine components is increasing, Barry noted. Prima Power Laserdyne began an ex- tensive R&D project in 2011, aiming to quantify the capability of fiber lasers with 12, 15, and 20-kW peak power, for drilling as a possible alternative or complement for Nd:YAG lasers, the predominant lasers used. In a paper presented in 2012, the company described its early experiments in fiber laser drilling. “Based on the experiments and experiences in the field, we’ve gone on to work with fiber laser makers. Not only is the fiber laser producing good holes at a good rate and meeting quality and throughput requirements, but it is doing so at a lower cost,” he said. The laser used in the early experiments was about $750,000. “We’ve driven the price point down,” Barry said. “We recognized the problem of laser cost and worked with the laser manufacturer [IPG Photonics] in the develop- ment of a QCW [Quasi Continuous Wave] laser with relatively high peak power and relatively low average power.”
Process Stability Is Key Laser-drilling system designs mandate rigid structures and process controls. With the Laserdyne 795 laser system,
74
ManufacturingEngineeringMedia.com | November 2013
users can drill, cut and weld medium to large 3D parts with a unique moving beam motion system. “Accuracy, ease of use, and process stability are critical,” Barry said of drilling effusion holes in turbine components that can cost thousands of dol- lars by the time the part reaches the laser system. Much of Laserdyne’s software development centers on the requirement for consistent holemaking techniques, Barry added. “Back in the early days, everybody drilled round holes. When I say holes, you imagine holes that are circular. The idea of a shaped hole is foreign to most people,” he said. “With shaped holes, a question is ‘How exactly do you measure the hole?’ In the past 10 years, we have seen more requirements based on airflow through the hole. The airflow was almost a second requirement to the hole diameter. Blueprints today often specify an airflow with the hole diameter as a reference only. It challenges the people that are making the part.” With the company’s current laser systems, users can measure the flow, and in the background, Laserdyne software adjusts hole size up or down, assuring the part meets design criteria. “Some parts are relatively simple, and you can drill the entire part and adjust,” Barry said. “All of this is done in the background with statistical process control. Another trend is to have different flow in different areas of the part; you can drill a portion of the part, adjust hole size if needed to achieve the cor- rect overall flow, drill the next area, and repeat the process until the part is complete. The in-process flow check is the basis for these adjustments. The critical part of all laser drilling is to have the process under control. If the user has a good feeling about the hole size and geometry, then they can check it less.” The latest capabilities enable users to drill production parts
to air-flow tolerances of ±3% on parts with thermal barrier coating (TBC) or ±1% on simple metallic parts, Barry said.
Micro Drilling for Medical
Laser micromachining in medical or microelectronics ap- plications often uses short-pulse fiber laser markers for drilling holes in applications including wafers, medical cannulae and microchannels for fluids, noted Mark L. Boyle, laser product engineer, Miyachi Unitek Corp. (Monrovia, CA). A laser systems integrator, Miyachi Unitek integrates 1070- nm, pulsed fiber lasers into complete laser systems for drilling holes in metals and other materials for a range of different applications. “We also have the vanadate green and vanadate UV technologies, for plastics and for some metals, and also the picosecond lasers,” Boyle said. “We’re running the whole gamut
Photo courtesy Prima Power Laserdyne
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212