This page contains a Flash digital edition of a book.
Abrasive Waterjet Technology


down as small as possible, there are limitations, for example, one of which is the capability of making a mixing tube that small.” Working with development partner Kennametal Corp.


(Latrobe, PA), supplier of abrasive waterjet nozzles made of composite carbide, Liu was able to significantly shrink the size of the nozzles. Kennametal, which exclusively licenses the ROCTEC (Rapid Omnidirectional Compaction) process for developing a tungsten carbide-based material used in mix- ing tubes, is a major supplier of abrasive waterjet nozzles to waterjet machine tool builders. “I’ve been working with them all along,” Liu said. “The best they can do is something around 6–8 thousandths of an inch [0.15–0.20 mm] in the ID of the mixing tube, in order to get good quality, or circular, holes through the length of it, and the material’s one of their best that allows minimizing the wear for abrasive waterjet applications.” With Kennametal, Liu worked on downsizing the nozzles and mixing tubes, eventually developing a 5/10 nozzle ver- sion—with a 0.005" (0.13-mm) orifice and 0.010" (0.25-mm) mixing tube—that is currently being beta tested. “We wanted to see how small we can go,” he said. “Now the obstacle is, from a pure fluid mechanics point of view, how small of a mixing tube can you squeeze the waterjet through? When you have a large mixing tube, with a large diameter, the flow or the fluid mechanics is the so-called gravity flow. But when you get down to a very small one, then the capillary effect on it becomes important—you actually increase the resistance through the mixing tube. The surface tension becomes important, instead of gravity, so the process is dominated by the capillary effect.” Liu offered a simple example of the process: “If you have a glass tube with a small diameter and you put in water, you can see the column of water rise through the tube—that is the capillary effect. When you look at the resistance of the flow through the small tube, it is inversely proportional to the fourth power of the diameter. That means the smaller the tube you go through is, the higher the resistance—sooner or later, you just don’t have anything squeezing it through, and it’s probably 60,000 psi.” Increasing the pressure of the abrasive waterjet micromachining applications becomes difficult given those circumstances. “It’s the so-called entrainment pressure of abrasive waterjet,” Liu added. “We are working on ways to overcome that, but it will take additional research.”


Refining Abrasive Delivery


The smallest production nozzle currently available from OMAX is the 7/15 Mini MaxJet5i on its new MicroMax machine,


64 ManufacturingEngineeringMedia.com | November 2013 See us at FABTECH Booth #S901


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212