ARTICLE | PHOTOTHERAPY | LED
phototherapy is a safe, fast and efficient
technology, at
the forefront of scientific and therapeutic
development. Conclusions
This study, based on the innovative technology of phototherapy LED with a red wavelength of 645 nm pulsed and infrared 850 nm continuous, well dosed, and homogeneously radiated over all treated areas, combined with bipolar RF after preparation of the skin by peeling with 70% glycolic acid, showed a significant overall improvement in the dimensions and quantities of stretch marks, significantly improving the look of a bloated or wrinkled surface, and a consequent gain of skin tone of the treated areas, all regardless of the type of stretch marks and skin, but with faster results on more recent stretch marks. Therefore, LED light therapy makes it possible to
benefit from a new approach to skin treatments where complex subcellular enzymatic reactions can be positively influenced by the action of ballistic photons released by sophisticated LED configurations, which consistently show unquestionable efficacy in a number of medical and aesthetic treatments. LED phototherapy is a safe, fast and efficient
technology, at the forefront of scientific and therapeutic development. In addition to being completely painless, one of the great advantages of this technology lies in its complete safety.
References
1. Les vergetures, Collectif, Ed. Fine Media 2010
2. Davey CM. Factors associated with the occurrence of striae gravidarum. J Obstet Gynaecol Br Commonw 1972; 79(12): 113–4
3. Chang AL, Agredano YZ, Kimball AB. Risk factors associated with striae gravidarum. J Am Acad Dermatol 2004; 51(6): 881–5
4. Thomas RG, Liston WA. Clinical associations of striae gravidarum. J Obstet Gynaecol 2004; 24(3): 270–1
5. Sellier S et al. Facteurs de risque des vergetures de la grossesse. Ann Dermatol Venereol 2005; 132(HS3): 29–30
6. Atwal GS, Manku LK, Griffiths CE, Polson DW. Striae gravidarum in primiparae. Br J Dermatol 2006; 155(5): 965–9
7. Karen J et al. Changes in the skin and of diseases during pregnancy. In: Freedberg IM, Eisen AZ, Wolf K, Austen KF, Goldsmith LA, Katz S. eds, Fitzpatrick’s Dermatology in General Medicine. 7th edn. New York: McGraw-Hill Medical, 2008
8. Shuster S. The cause of striae distensae. Acta Derm Venereol Suppl (Stockh) 1979; 59(85): 161–9
9. Poindevin LO. Striae gravidarum. Their relation to adrenal cortical hyperfunction. Lancet 1959; 2(7100): 436–9
10. Troisier EP. Ménétrier Histologie des vergetures. AnnGynecol (Paris) 1889; 31: 206
11. Shelley WB, Cohen W. Stria migrans. Arch Dermatol 1964; 90: 193–4
12. Arem AJ, Kisher CW. Analysis of striae. Plast Reconstr Surg 1980; 65(1): 22–9
13. Viennet C, Bride J, Cohen-Letessier A, Humbert P. [Mechanical behavior of fibroblasts included in collagen lattices]. French. J Soc Biol 2001; 195(4): 427–30
14. Cohen-Letessier A. Les vergetures: Maladie du fibroblaste? Théories étiopathogéniques. Les Nouvelles Dermatologiques 1998
15. Salter SA, Kimball AB. Striae gravidarum 2006; 24(2): 97–100
16. Zheng P, Lavker RM, Kligman AM. Anatomy of striae. Br J Dermatol 1985; 112(2): 185–93
17. Adam JE, Craig G. Striae and their relation to topical steroid therapy. Can Med Assoc J 1965; 92: 289–91
18. Moretti GA, Rebora M. Striae distensae: how and why they are formed. In: Moretti G,
54 ❚
Rebora M. eds, Striae Distensae. Milan: Brocades, 1976
19. Morelli JG. Diseases of the dermis. In: Kliegman RM et al. eds, Nelson Textbook of Pediatrics. 18th edn. Philadelphia: Elsevier Saunders, 2007
20. Lee KS, Rho YJ, Jang SI, Suh, MH, Song JY. Decreased expression of collagen and fibronectin genes in striae distensae tissue, Clin Exp Dermatol 1994; 19(4): 285–8
21. Roos N, Cohen-Letessier A. Les vergetures. Da la clinique au traitement. France: Editions Med’Com, 2009
22. Mitts TF, Jimenez F, Hinek A. Skin biopsy analysis reveals predisposition to stretch mark formation. Aesthetic Surg J 2005; 25(6): 593–600
23. Postgraduate Medical Journal papers 1950. 26, 201, 417; Lancet, November/ December 1950. 2, 415, 595
24. Piérard-Franchimont C, Hermanns JF, Hermanns-Lê T, Piérard GE. Striae distensae in darker skin types: the influence of melanocyte mechanobiology. J Cosmet Dermatol 2005; 4(3): 174–8
25. Karu TI, Kolyakov SF. Exact action spectra for cellular responses relevant to phototherapy. Photomed Laser Surg 2005; 23(4): 355–61
26. Karu T. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 2008; 84(5): 1091–9
27. Vinck EM, Cagnie BJ, Cornelissen MJ, Declercq HA, Cambier DC. Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci 2003; 18(2): 95–9
28. McDaniel DH, Newman J, Geronemus R, Weiss RA, Weiss MA. Nonablative nonthermal LED photomodulation — multicenter clinical photoaging trial. Lasers Surg Med 2003; 32(Suppl 15): 22
29. Webb C, Dyson M, Lewis WH. Stimulatory effect of 660 nm low level laser energy on hypertrophic scar-derived fibroblasts: possible mechanisms for increase in cell counts. Lasers Surg Med 1998; 22(5): 294–301
30. Barolet D, Boucher A. Thérapie LED non ablative et non thermique. Principes de photobiologie cutanée. Indications- perspectives futures. La science des LED. Nouv Dermatol 22007; 6(Suppl 7): 10–5
31. Lam TS, Abergel RP, Meeker CA, Castel JC, March 2012 |
prime-journal.com
Dwyer RM, Uitto J. Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci 1986; 1(1): 61–77
32. Menezes S, Coulomb B, Lebreton C, Dubertret L. Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity. J Invest Dermatol 1998; 111(4): 629–33
33. Mester E, Ludány G, Sellyei M, Szende B, Tota J. The stimulating effect of low power laser rays on biological systems. Laser Rev 1968; 1: 3
34. Karu TI. [Molecular mechanism of the therapeutic effect of low-intensity laser irradiation]. Russian. Dokl Akad Nauk SSSR 1986; 291(5): 1245–9
35. Whelan HT, Smits RL Jr, Buchman EV et al. Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg 2001; 19(6): 305–14
36. Karu TI, Afanas’eva NI. [Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light.] Dokl Akad Nauk 1995; 342(5): 693–5
37. Poyton RO, Ball KA. Therapeutic photobiomodulation: nitric oxide and a novel function of mitochondrial cytochrome c oxidase. Discov Med 2011; 11(57): 154–9
38. Weiss RA, Weiss MA, Geronemus RG, McDaniel DH. A novel non-thermal non-ablative full panel LED photomodulation device for reversal of photoaging: digital microscopic and clinical results in various skin types. J Drugs Dermatol 2004; 3(6): 605–10
39. Geronemus R, Weiss RA, Weiss MA, McDaniel DH, Newman J. Non-ablative LED photomodulation. Light activated fibroblast stimulation clinical trial. Lasers Surg Med 2003; 25: 22
40. Barolet D, Boucher A, Bjerring P. In vivo human dermal collagen production following LED-based therapy: the importance of treatment parameters. 2005. http://tinyurl. com/6sqpepo (accessed 18 January 2012)
41. Boisnic S, Branchet MC, Bénichou L. Intérêt d’un nouveau traitement des vergetures par exposition à des sources lumineuses monochromatiques. J Med Esth et Chir Derm 2006; 33(131): 181–6
42. Lopez MJ, Hayashi K, Fanton GS, Thabit G 3rd, Markel MD. The effect of radiofrequency energy on the ultrastructure of joint capsular collagen. Arthroscopy 1998; 14(5): 495–501
43. Ross EV et al. Une nouvelle non ablative technologies de radiofréquence pour application cutanée de serrage. AAD Annual Conference, 2000
44. Alster TS, Lupton JR. Nonablative cutaneous remodeling using radiofrequency devices. Clin Dermatol 2007; 25(5): 487–91
45. Zelickson BD, Kist D, Bernstein E et al. Histological and ultrastructural evaluation of the effects of a radiofrequency-based nonablative dermal remodeling device: a pilot study. Arch Dermatol 2004; 140(2): 204–9
46. Wright NT, Humphrey JD. Denaturation of collagen via heating: an irreversible rate process. Annu Rev Biomed Eng 2002; 4: 109–28
47. Murray JC, Farndale RW. Modulation of collagen production in cultured fibroblasts by a low-frequency, pulsed magnetic field. Biochim Biophys Acta 1985; 838(1): 98–105
48. Alster TS, Lupton JR. Nonablative cutaneous remodeling using radiofrequency devices. Clin Dermatol 2007; 25(5): 487–91
49. Zelickson BD, Kist D, Bernstein E et al. Histological and ultrastructural evaluation of the effects of a radiofrequency-based nonablative dermal remodeling device: a pilot study. Arch Dermatol 2004; 140(2): 204–9
50. AlsterT, Tanzi E. Improvenement of neck and cheek laxity with a nonablative radiofrequency device: a lifting experience. Dermatol Surg 2004; 30(4 Pt 1): 503–7
51. Mordon S. Intérêt de l’étude de la biréfringence dans l’analyse de la rétraction collagénique après chauffage laser ou radio-fréquence. Réalités Thérapeutiques en Dermato-Vénérologie 2004; 138: 33–8
52. Suh DH, Chang KY, Son HC, Ryu JH, Lee SJ, Song KY. Radiofrequency and 585-nm pulsed dye laser treatment of striae distensae: a report of 37 Asian patients. Dermatol Surg 2007; 33(1): 29–34
53. Hantash BM, Ubeid AA, Chang H, Kafi R, Renton B. Bipolar fractional radiofrequency treatment induces neoelastogenesis and neocollagenesis. Lasers Surg Med 2009; 41(1): 1–9
54. Manuskiatti W, Boonthaweeyuwat E, Varothai S. Treatment of striae distensae with a TriPollar radiofrequency device: a pilot study. J Dermatolog Treat 2009; 20(6): 359–64
At the end of this study, it was decided to resume
treatment on patients who wished after an interruption of 3 months in line with the 6 months required to complete neocollagenesis in order to verify the feasibility of improving average and good results by additional sessions over 1 or 2 months. This work will be the subject, if successful, of a further publication.
Declaration of interest The authors of this study have no interest of any nature with the suppliers of the devices mentioned in this article.
Thanks to Tiina Karu (Professor, Head of Laboratory of Laser Biology and Medicine of Russian Acad. Sci.) for the riches of his scientific writings on the effects of light on human cells, forming the basis of our work.
All figures ç Tedgui, Blanchemaison, Le Goff
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112