search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Background to production of soya beans in Brazil?


The soya bean planting season begins as early as September in some of Brazil’s central growing regions. Once the soya bean has flowered and set pods, growers will leave the plants to dry in the field. When 90 to 100% of the pods are brown in colour they are ready to be harvested. Most farmers aim to harvest soya beans with a moisture content of 13%; however, monitoring is usually assessed by pod colour which, as a subjective assessment, may not always be as accurate as using moisture meters. More sophisticated harvest operations use combine harvesters equipped with moisture meters which allow constant measuring of pod moisture content during harvest. If drying is required, it may occur either at the farm or at cooperatives where drying machinery is shared.


From the beginning of January, Brazilian growers start to harvest soya beans growing across an estimated 36.9 million hectares of land, a production area larger than Germany. Transporting the harvested beans from field to ports remains a challenge in Brazil where the transport and crop storage infrastructure has failed to keep pace with ever-increasing production. Soya beans are trucked hundreds of kilometres from the Mato Grosso de Sol and Cerrado savanna to major export ports in Santos, Paranaguá and Rio Grande.


These days a larger proportion of soya beans originating from Mato Grosso and expanding growing regions in the North are trucked along the BR 163 highway to Amazon river port cities. There, the beans are loaded onto river barges which travel along the Amazon and Tapajós rivers in convoys to ocean ports in Sanatrem, Bacarena and São Luis.


All routes may take multiple weeks depending on availability of transport and weather conditions which severely affect the condition of the roads. The laden trucks and barges may be regularly exposed to heavy rain showers.


Brazil overtakes the US


Brazil was the world’s second largest producer of soya beans for many years, competing only with the US. The rivalry between US and Brazilian soya bean farmers has been driven by China’s growing appetite for soya beans which are crushed to produce soya bean oil for cooking and soya bean meal to feed China’s swine herd, which was 440 million strong in 2017. China imported just over 95 million tonnes of soya bean in 2017. It is estimated that the US supplied some 32.9 million tonnes of this trade, while Brazil supplied some 50.93 million tonnes.


As a result of the US-China trade war in 2018, when China imposed a retaliatory tariff on US soya beans, shipments from the US halved. During this time, Brazilian soya bean growing regions expanded further and exports increased in order to meet Chinese demand. An outbreak of African swine fever virus in August 2018 wiped out nearly half of the Chinese swine herd and resulted in reduced demand for soya bean meal in China. This was reflected in the Brazilian soya bean export figures. The trade has since started to recover and Chinese crushers are keen to make up the supply issues related to COVID-19 restrictions last year. As of May 2020, Brazil surpassed US soya bean annual production, harvesting an estimated 117 million tonnes. Brazil’s soya bean exports this year to China have been described as a bonanza.


It is known and understood that soyabean cargoes can self-heat and in some cases the types of condition of some of these bulk cargos on discharge include mould, caking and discoloration. What is the process?


The cargo temperature and the availability of moisture within a soya bean cargo are the two key factors that determine whether mould growth can be supported in soya beans in bulk storage. Mould spores that are naturally present on the soya bean seed can germinate and grow when the relative humidity at the surface of the soya bean is above 65%. The relative humidity at the surface of the beans is determined by the soya bean moisture content and temperature. Once established, mould growth can cause the degradation of the bean through the breakdown of the soya bean and production of heat. This may further lead to the self-heating pockets of cargo within a bulk stow. Pockets of self-heating cargo tend to become caked and as heat progresses, over time, the soya beans may discolour from yellow to brown to black in the worst-case scenario. High temperatures may compromise the quality of the extracted oil and protein availability within soya bean meal products.


What can be done by producers to prevent deterioration and damage?


To minimise the risk of deterioration during a voyage, the moisture content of a soya bean cargo should be as close as reasonably possible to the safe transportable moisture content at the time of shipment. Nonetheless, a risk of deterioration persists since large consignments typically comprise smaller parcels of different inherent quality, specifically parcels with varying moisture contents and potentially different temperatures.


To evaluate whether soya beans will go mouldy during a long voyage, the moisture content and cargo temperature should be measured and reviewed for each lot prior to loading the trucks/ barges for transport to ports. The data obtained can then be reviewed against the ASAE Standard D245.6 (Oct 2007 Revised 2017) standard. This standard describes the Moisture Relationships of Plant- based Agricultural Products and can assist Shippers determine whether a parcel of cargo may be liable to mould growth and associated self- heating based on the temperature


The Report • June 2021 • Issue 96 | 81


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136