Safety and reliability in complex software-intensive systems, showing that information about reliability alone cannot lead to conclusions about the safety of a system. Image credit: DNV
increasing automation and remote operation come together with growing centralization of operations. On the other hand, complex and integrated systems involve many different stakeholders to contribute to smooth operations, and lead to more dispersed teams that need to work together. Who is accountable for what? What happens if communication is disrupted, or normally ‘passive’ operators are rapidly called into action?
Companies will therefore need to support people’s roles and needs. This, van de Merwe argues, requires two things. One is human-centred design of systems with technologies that support human performance. The other is balanced ‘function allocation’.
In one example of raising holistic understanding of risk, a DNV-led joint industry project (JIP) on human- centred design of alert management systems addressed challenges related to alarm flooding on the bridge. The project arose from a general consensus that alarms function less well as a decision support tool than they should do, and at times are least helpful when they are needed most. One key conclusion was the need for system integration and human-centred design to provide the operator with the necessary information that they need to make decisions promptly and act appropriately.
Thirdly, as organizations increasingly become a patchwork of multiple stakeholders and suppliers, they need digital transformation strategies for managing emerging risks across the entire organization.
116 | The Report • June 2021 • Issue 96
Allocating tasks between people and technology
The paper sees ‘function allocation’, the division of functions between technology and people, as particularly important during digital transformation. This, van de Merwe explains, is because there are potentially fewer people available to intervene if the system’s design does not meet safety requirements or does not work as intended. People adapt better than technology to unknown challenges and use all means, including technology, to handle situations creatively, the paper observes.
In one practical example, DNV has been working with the European Maritime Safety Agency to identify emerging risks and regulatory gaps related to varying degrees of vessel autonomy. This has involved describing how functions should be allocated between the operator and the technical system, followed by risk analysis to evaluate the solution’s safety.
“Clearly, function allocation in digital transformation requires an organization to have or source competence about how digitalization can affect the successful allocation of functions,” van de Merwe points out.
Why do I need a digital transformation strategy?
As digitalization enables safety risk management but also creates new risk, organizations need digital strategies with processes
to manage changes resulting from the transformation. Company decisions should support its digital ambitions, drive the organization’s strategic goals, and, importantly, be understood by and communicated to all relevant stakeholders so that there is a unified understanding of the digital risks. “It is important that the transformation processes include a requirement to revisit the strategy frequently in order to keep pace with technological development,” van de Merwe emphasizes. “At DNV we offer a holistic service approach to support our customers on their individual transformation pathways,” Øystein Goksøyr, Head of Department Safety Advisory points out. “We have defined four areas ranging from strategy and smart fleet transformation through to management implementation and smarter operations in which we offer services to ensure the identified opportunities are safe and efficient and are implemented effectively.”
Alternative fuels have specific safety risks
When it comes to decarbonization, existing and pending targets mean the clock is already ticking, creating pressure to make timely choices about realistic pathways to 2050: new, alternative carbon- neutral fuels and the associated fuel systems and infrastructure. International shipping must halve greenhouse gas (GHG) emissions by 2050 to meet International Maritime Organization (IMO) targets and full decarbonization by 2100.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136