There will be demonstration projects for onboard use of hydrogen and ammonia by 2025 paving the way for zero-carbon ships, and these technologies may be ready for commercial use in four to eight years. Methanol technology is more mature and has already seen first commercial use.
A range of new technologies are emerging including fuel cells, carbon capture, and storage (CCS), as well as wind power.
As owners consider these and other technologies for their newbuilds, they will be evaluating the economic potential of fuel and energy- efficiency strategies over the lifetime of a ship. This will entail a review of the impact of the chosen fuel strategy on ship design. Considering the significant uncertainties involved over the lifetime of a ship, they will need to focus on fuel flexibility and fuel ready solutions to ease the transition and minimise the risk of investing in stranded assets.
16. What about safety?
Ensuring safety is of paramount importance in achieving the successful and timely roll out of new fuels such as hydrogen and ammonia. The development of safety regulations and guidelines will be necessary to evolve from large scale demonstration models to commercial use.
IMO’s International Code of Safety for Ships using Gases or other Low-flashpoint Fuels (IGF Code) addresses standards for ships using low-flashpoint fuel in general, but the current version focuses on regulations to meet the functional requirements for gas fuel (LNG). During the 7th session of the IMO Sub-Committee on Carriage of Cargoes and Containers (CCC- 7), which was held from 6 to 11 September 2021, a work plan was agreed for the development of provisions for new low-flashpoint fuels under the IGF Code, including hydrogen, ammonia, LPG and methyl/ ethyl alcohols.
17. Are some alternative fuels better suited for certain ship types or trades?
For a fuel to become widely used, it must have adequate scalability,
i.e., both the infrastructure and the demand must be there, and it must be generally price competitive for take up. This may be easier to achieve for ships on regular liner routes. Those travelling between ports (i.e., bulk vessels on tramp trades) will have a difficult time sourcing the scarcer options.
18. Are alternative fuels presently available in key world ports? It not, when will they be?
LNG is presently the most readily accessible alternative fuel but is still not easy to source and certainly not carbon free. LNG (Bio-LNG and E-LNG) and Biofuels are good options for transitional fuels.
Methanol is only available in limited areas and is not yet in sufficient quantities to satisfy the requirements of the industry.
For the other alternative fuels under consideration, testing, development and creation of associated infrastructure is still on-going and they are not yet readily available.
19. What are the overall risks and impact to vessel operations associated with the use of alternative fuels?
A myriad of risks and costs considerations arise when selecting and using an alternative fuel. Some of these are identified in the table above. The principal risks and challenges concern crew safety, energy output compared to storage requirements onboard, and the availability of bunkering facilities.
Biofuels bring technical challenges concerning oxidation stability, cold flow properties, risk of microbial growth, clogging of filters, and increased engine deposits. They thus require careful handling.
During the 9th session of the IMO’s Sub-Committee on Pollution Prevention and Response (PPR-9), held on April 2022, it was agreed clarity on the use of biofuels on board ships is required. The Unified Interpretation provides a definition for the term “biofuel” and indicates that a fuel oil which is a blend of not more than 30% by volume of biofuel
should meet the requirements of regulation 18.3.1 of MARPOL Annex VI, while a fuel oil which is a blend of more than 30% by volume of biofuel should meet the requirements of regulation 18.3.2 of MARPOL Annex VI. This will be presented for approval by MEPC-78.
Gases in liquid form typically require storage at cryogenic temperature and specific safety standards will need to be satisfied. Hydrogen, for example, has a wide flammability range, while ammonia is highly toxic. Stringent measures will be required to protect crew from harmful exposure, and training will be required.
Hydrogen is a clean fuel, however, manufacturing it is energy-intensive and may have carbon by-products. What is now called brown hydrogen is created through coal gasification. The process for producing grey hydrogen from natural gas releases carbon waste in the atmosphere. Blue hydrogen utilises the same process that is used to produce grey hydrogen but with carbon capture and storage, and hence it has a lower environmental impact as compared to grey hydrogen. Green hydrogen production, although currently expensive, is seen by many as the ultimate solution and uses renewable energy to create hydrogen fuel.
Green ammonia will cost two to four times as much to make as conventional ammonia. The green and blue ammonia value chains differ in the hydrogen production method used. Green ammonia is generated from water electrolysis while blue ammonia is generated using natural gas, with the addition of carbon capture.
In terms of storage capacity, energy density/calorific value of the fuel is critical. More storage space on the ship will be required if a fuel does not have an energy density that is at least comparable to that of traditional fuel. Hydrogen, ammonia, and methanol, for example, all have a lower density, requiring larger storage tanks onboard ships.
20. Considering the current lack of alternative fuel infrastructure, and the absence of a present clear ‘winner’ amongst
The Report • September 2022 • Issue 101 | 63
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128