CREW INSUFFICIENTLY SWAGING COMPRESSION FITTING FERRULE LED TO CONTAINERSHIP FIRE IS INVESTIGATION FINDING
The National Transportation Safety Board (NTSB) has published its report on the engine room fire aboard the containership President Eisenhower, that took place on April 28, 2021, off California.
The engine room and machinery on board the President Eisenhower were automated, controlled, and monitored such that the machinery spaces could be unattended. The ship’s engineers typically worked in and monitored the machinery spaces during the day, and the engine room and
machinery spaces were unattended at night. At 0053, the second engineer and first engineer departed the ECR for the accommodation spaces above. The engine room and machinery spaces were put into an “unattended” status with alarms configured to sound on the bridge, in common areas, and in the second engineer’s cabin (because the second engineer was the designated duty engineer on watch). Additionally, the President Eisenhower had a closed-circuit television (CCTV) system, with the majority of the system’s video cameras located in the machinery spaces. The crew used desktop computer stations to view the spaces but did not continually monitor them.
Additional detectors were triggered within the engine room, and the vessel’s general alarm automatically activated. Using the CCTV monitor on the bridge, the captain and third mate confirmed that there was an engine room fire. En route to his emergency muster station in the portside safety storeroom, AB1 verbally alerted crewmembers that were off duty in their cabins of the fire in the engine room.
Lessons Learned... 1 Rapid Oil Leak Detection Rapid oil leak-detection systems are a valuable tool that can be used to prevent fire in machinery spaces. Video analytic technology is designed to use standard CCTV video to detect fuel mist and spray in real time and alert the crew before any ignition and fire. This technology is supported by class societies as an acceptable method for identifying leaks and can be integrated with existing CCTV systems. Had this technology been in use aboard the President Eisenhower, the spraying fuel oil may have been detected well before the fire developed.
2 Containing Engine Room Fires The crew of the President Eisenhower effectively contained the spread of a main engine room fire by removing fuel and oxygen sources, cooling boundaries, and communicating effectively. These efforts show the importance of realistic scenario-based training, including engine room emergencies, which involve shutting down machinery, fuel oil, lube oil, and ventilation systems, as well as boundary monitoring, to quickly contain and suppress engine room fires, which can spread to other spaces and/or cause a loss of propulsion and electrical power.
Download the full report at
https://bit.ly/3ySFmd2.
LUXURY YACHT FIRE MOST LIKELY CAUSED BY ELECTRICAL FAULT SAYS NTSB REPORT
The fire that destroyed a luxury yacht near Key West in March 2021 most likely started from an electric source within the sound enclosure for the vessel’s starboard generators, the National Transportation Safety Board (NTSB) report has determined. However, due to the extent of the fire damage, investigators were unable to conclusively determine the source of the fire.
The Report • September 2022 • Issue 101 | 25
Safety Briefings
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128