search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
ENVIRONMENTAL SOLUTIONS


alternative methods of monitoring, but all of these have major limitations. For example, online XRF is unable to measure light elements such as lithium and sodium, and it is almost impossible to calibrate XRF for low concentration impurity measurements.


Advantages of continuous monitoring Given the large sums of money involved in lithium manufacture (raw materials and final product), the accurate dosing of precipitation chemicals is extremely important. For example, when sodium carbonate is added to a slurry containing beta spodumene under high temperature and pressure, lithium carbonate and analcime solids are formed. If insufficient sodium carbonate is dosed, some of the lithium will not react to form lithium carbonate, and unreacted lithium will be lost in the side product analcime sand. This is extremely undesirable because it represents a loss of revenue. Overdosing is also undesirable because it would result in a waste of process chemicals.


Continuous monitoring is also vital for the reduction of battery metal impurities such as sodium, potassium, copper, zinc and calcium; all of which can be measured by µDOES® at any stage of the hydrometallurgical production and recycling process. Strict monitoring and control can therefore reduce the impurity levels and thereby prevent the cost and delay incurred by retreatment.


Case Study – lithium production from spodumene Keliber, a subsidiary of Sibanye- Stillwater, used the µDOES® analyser in a pilot-scale test programme in 2022. During the project, battery-grade lithium hydroxide monohydrate was produced from spodumene concentrate treated by high-temperature conversion in a rotary kiln. A hydrometallurgical technology was developed to produce battery-grade lithium hydroxide monohydrate by soda pressure leaching. The pilot ran continuously at the demonstration plant for 400 hours, and achieved a total lithium recovery rate of more than 88%.


Keliber tested the analytical performance of the µDOES® analyser for the continuous optimisation of precipitation chemical dosing. Nearly 80 samples were drawn from the process and the sodium and lithium concentrations were analysed in parallel using both the µDOES® continuous analyser and a laboratory ICP-OES. The results showed an excellent degree of correlation between the µDOES® and laboratory analysis.


26


Commenting on the advantages of this new monitoring technology, Sami Heikkinen, Site Manager at the Keliber Lithium Chemical Plant said: “Chemical dosing based on reliable real-time data brings stability to the process, which is very important because it avoids drift and optimises both yield and quality while minimising cost.”


Conclusions


The switch from fossil fuels to electrically powered vehicles and renewable energy has dramatically increased the importance of battery technology. This, in turn, has created a major challenge for battery manufacturers and their supply chains. Consequently, there is a high demand for new technology that can help improve the quality and efficiency of production.


As the EV market develops, and global battery metal resources start to dwindle, there will be an even greater emphasis on the recycling of used batteries. Again, the online µDOES® analyser will help provide a solution because the processes involved with black mass recycling have to be closely monitored and controlled.


The Sensmet µDOES® represents a breakthrough technology that will help the battery industry to realise its dream of effective process and quality control. The ability to conduct continuous, simultaneous measurements of multiple metal species in an aqueous matrix offers battery metal manufacturers the opportunity to improve process efficiency, lower costs, increase throughput, and improve the quality of the final product.


www.reviewonline.uk.com


About Keliber:


Keliber is a Finnish mining and battery chemical company seeking to implement the sustainable production of battery- grade lithium hydroxide, utilising its own ore. Keliber’s product is an essential component in lithium-ion batteries, which enable the electrification of transportation, the storage of renewable energy and the acceleration of digitalisation.


Keliber operates in Finland, where some of the most significant lithium deposits in Europe are found. Utilising the best available technologies in mining and production, and with a sustainability focus, Keliber minimises the environmental impact of its operations and ensures the conditions necessary for the circular economy.


About Sensmet:


Sensmet was founded in 2017 as a university spin-off following several years of research on micro-discharge analyser technology and related application development. Sensmet’s breakthrough technology, Micro-Discharge Optical Emission Spectroscopy µDOES®, enables the online multi-metal analysis of aqueous samples. Critically important applications include continuous monitoring of lithium and other battery metals during the production process and battery metal recycling. Other applications for the continuous measurement of metals include ultrapure water, saturated brines and process water.


aappo.roos@sensmet.com www.sensmet.com


Enquiry No. 26


INDUSTRIAL PROCESS REVIEW


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32