ENVIRONMENTAL SOLUTIONS
Breakthrough technology for lithium manufacture
As global effort to fight climate change intensifies, the challenge for battery manufacturers and their supply chains is to find ways to meet the rapidly growing demand for electric vehicles (EVs). To help meet this challenge, a small start-up business in Finland, Sensmet, has developed an online monitoring technology that promises a step-change improvement in both the manufacturing and recycling of battery metals. Sensmet CEO Dr Toni Laurila, explains: “We bring the analytical performance equivalence of laboratory ICP-OES next to the production process where real-time metal concentration results are acutely needed. In comparison with laboratory analysis, Sensmet’s technology provides robust, fully automated online measurement, which offers enormous advantages for process management and quality control.”
Traditionally, battery metal
manufacturers have had to rely on batch sampling and laboratory analysis in order to control their processes, but typically this incurs a delay of 4–10 hours. Sensmet has therefore developed a breakthrough online technology; Micro-Discharge Optical Emission Spectroscopy µDOES®, which is able to measure multiple metals, including alkali metals, such as any battery metal and their impurities, in real-time.
Laboratory analysis can take several hours for a sample to be collected and analysed in a laboratory, which means that process managers are unable to adjust dosing of chemicals efficiently. Consequently, raw materials are wasted and product purity - the most important product quality - is difficult to control,
MARCH/APRIL 2023
which is especially important because impurities significantly affect the performance of Li-Ion batteries. Sampling for laboratory analysis is also laborious, expensive and often rather challenging to reliably arrange 24/7. For all of these reasons, continuous monitoring has long been the dream in lithium manufacture, so with successful trials at several plants, the industry is delighted that the dream has become reality.
Background
According to the International Energy Agency (IEA), global sales of new electric vehicles (EV) grew from 3 million in 2020 to 6.6 million in 2021, and with increasing numbers of governments pledging to discontinue sales of petrol and diesel vehicles, demand for the batteries in EVs is set to escalate even further.
It has been estimated that 2 billion battery electric, plug-in hybrid and fuel-cell electric light-duty vehicles will be needed by 2050 to meet net zero targets. Each EV lithium-ion battery pack contains around 8 kg of lithium, and last year global lithium production was 100 000 tons. Lithium is also required for a wide range of other products, including mobile phones, laptops and energy storage systems. Consequently, there are enormous demands for lithium production to be efficient, high-quality and fast. Similarly, it will be necessary to recycle the components of EV batteries that have reached the end of their useful service.
High purity lithium hydroxide or lithium carbonate is required for battery manufacture. Impurities represent a significant challenge because they cause:
www.reviewonline.uk.com
poor charging performance, which lowers the range of EVs; more frequent charging; poorer performance in cold temperatures; and in some cases, they can cause batteries to overheat.
Continuous multi-metal monitoring technology Sensmet’s Micro-Discharge Optical Emission Spectroscopy, µDOES®, enables the multi-metal real-time analysis of aqueous samples. In addition to lithium manufacture, the technology is also suited to the ‘black mass’ recycling of battery metals.
The patented µDOES® technology is based on atomic emission spectroscopy. A micro-discharge (electric spark) is created directly inside the aqueous sample, causing a microscopic volume of the fluid surrounding the spark to be flash-heated to 10 000 °C. Molecular species in the micro-discharge are dissociated into atoms, which are excited to their respective higher electronic states. Upon returning to their ground state, these atoms release their excess energy by emitting light at their characteristic wavelengths. The µDOES® measures this atomic emission spectrum to derive quantitative analysis of the metals contained in the sample.
Data from the µDOES® analyser are displayed locally showing the concentrations and trends for each metal, and alarm levels can be set for each element. Results are transferred digitally to users’ databases and/or the cloud.
In hydrometallurgical processes which cannot be controlled by monitoring pH, direct measurements of dissolved metal concentrations are essential. There are
25
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32