Missing Operators
Who Wants to Be a Euronaire? What is the missing symbol from this mathematical sentence that would make it true?
(5
Is it: A. (5 + 3) + 7
B. (5 – 3) + 7 3) + 7 = 22 C. (5 × 3) + 7 D. (5 ÷ 3) + 7
You may not be able to phone a friend, but if you’re not sure, you could ask the audience!
1. Put the correct symbols into these. a) 8 + (9 d) 12
6) = 23 g) 24 – (17
(33 ÷ 11) = 4 9) = 16
b) (4 × 2) e) (7
3 = 24 h) (42 ÷ 6) (5
5) – 10 = 25 9 = 63
But what if both operators are missing, like in this one? 14
2) = 2
There are lots more possibilities now. We can narrow down the possibilities by using common sense. Both symbols will not be × because the answer is too small. Both symbols will not be + because the answer is too small. If we look at the first number and the answer, we get a very good idea.
What must you do to 14 to get an answer of 2? 14 ÷ 7 = 2
We know that the operation inside the brackets must give us an answer of 7. You should now know what symbol to use.
2. Try these. a) 7 d) 6
g) 45
(4 (2
(5
(24 (8
5) = 63 5) = 60 4) = 5
35) = 78 e) 143 3) = 35
b) 9 e) 7 h) 6
(3 (9
(14
6) = 18 3) = 21
5) = 54
3. Now use your calculator to work out the missing symbols. a) 19 c) 14
3) = 70 (36 130 Rules and Properties
b) 83 d) 56 f) 24
c) 32 f) 21 i) 11
(76 (24 (76
(4
(15 (84
38) = 121 6) =14
19) = 34656 2) = 4 6) = 12 7) = 132
c) (9 – 5) f) 36 ÷ (8 i) 8 × (10
7 = 11 4) = 3
2) = 64
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227