search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Tackle simulation of polymerization parameters with the newly developed copolymerization model by Polymer Institute of Brno, Unipetrol Group.


The copolymerization model can be utilized in two principal ways, as a tool for an on-line prediction of mechanical properties during the particular copolymer grade production, and as a tool for the determination of polymerization conditions leading to the synthesis of improved copolymer grades with a balancedcombination of stiffness/impact resistance.


Copolymerization model - simulation of mechanical properties of heterophase copolymer Impact resistance of heterophase copolymer is mainly influenced by the ethylene-propylene rubber phase (RC) content and composition in heterophase copolymer, including ethylene content in the rubber phase (C2-RC). The higher the rubber content, the higher the impact resistance. But the increase in this parameter is manifested also by some additional effects - e.g. by decreasing the heterophase copolymer stiffness. The isotacticity of homopolymer matrix (Al/Si molar ratio), its melt flow rate (MFR1) and melt flow rate of resulting heterophase copolymer (MFR2) show an additional impact on mechanical properties of heterophase copolymers.


The copolymerization model, created in Polymer Institute Brno, is based on the mechanical properties data pertaining to 28 copolymer samples, synthesized at defined ranges of the above mentioned parameters. The multidimensional regression analysis of the impact of these five parameters (Al/Si, MFR1, MFR2, RC, C2-RC) on the heterophase copolymer stiffness and impact resistance has led to the model, represented by Equation 1, specifying the heterophase copolymer stiffness (FM), and by Equation 2, specifying the copolymer impact resistance (Charpy) at 23°C and -20°C.


FM = a + b × ln(MFR1) + c × ln(MFR2) + d × (RC) + e × (RC)2 + f × (C2 - RC) + g × (C2 - RC)2


(1) where a, b, c, d, e, f, g are best-fitted correlation coefficients


Charpy = a + b × ln(MFR1) + c × ln(MFR2) + d × (RC) + e × (RC)2


(2) where a, b, c, d, e, f, g are best-fitted correlation coefficients


Based on the input of these five variables the resulting copolymerization model enables to calculate and optimize the stiffness and the impact resistance of resulting heterophase copolymer (MFR 21N = 25 g/10min).


Influence of RC content


10 12


4 6 8


0 2


15 16 16 17 17 18 RC (wt.%) ° 18 19 19


(AI/Si = 3, MFR1 = 40, MFR2 = 25, C2-RC = 45 wt.%) Charpy 23°C


Charpy -20°C Flex. modulus


1500 1450


1400 1350 1300 1250 1200


10 12


4 6 8


0 2


45 50 55 C2-RC (wt.%) Contact: Dr. Jan Gruza, Senior Researcher at Polymer Institute Brno, Jan.Gruza@polymer.cz, www.polymer.cz/en 60 Influence of C2-RC content


(AI/Si = 3, MFR1 = 40, MFR2 = 25, C2-RC = 18 wt.%) Charpy 23°C


Charpy -20°C Flex. modulus


1500 1450 1400 1350 1300 1250 1200


+ f × (C2 - RC) + g × (C2 - RC)2


Charpy (kJ/m2


)


Flexural modulus (MPa) Charpy (kJ/m2 )


Flexural modulus (MPa)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86