search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
4 August / September 2019


The Quest for True Ultra High Performance Supercritical Fluid Chromatography: a Mini-Review


by Terry A. Berger, PhD, DIC, 9435 Downing St, Englewood, FL 34224


Some manufacturers of current supercritical fluid chromatographs (SFC’s) routinely claim that their products are ‘ultra-high performance’, similar to ultra-high performance liquid chromatographs (UPLC’s - here defined as reduced plate height ≈ 2 with sub-2 µm particles in 2.1 mm internal diameter (ID) columns). However, none of the current commercially plumbed SFC instruments are any better in terms of extra-column dispersion than instruments available in 1992, which were specifically designed for use with 4.6 mm ID, 150-250 mm long columns packed with 5 µm particles. Despite the fact that fast and ultra-fast separations are an important recent development, today, most users appear to be uninterested or unwilling to make any of the modifications necessary to approach true ultra-high performance SFC.


It is often stated that column technology has outstripped instrumentation, but this does not mean columns 3 or 2.1 mm ID are all well packed. A few groups have attempted to modify commercial SFC instruments to try to determine the quality of small diameter columns packed with sub-2 µm particles. In fact, the results from these studies suggest that few columns used in these reports were actually well packed. The results were often confusing and counter-intuitive, due to the convolution of poor packing and excessive extra-column effects. Thus, both the instruments and the columns were inadequate. This review describes the various attempts, the often confusing results, and a path forward.


Introduction


The use of 2.1 mm ID columns, packed with sub-2 µm particles, producing hmin





2, defi nes ultra-high performance liquid chromatography (UHPLC). In order to achieve a minimum reduced plate height (hmin


) approaching 2, on such columns, very low extra-column dispersion, on the order of a few µL2


, or smaller, is required.


Compared to conventional HPLC’s, UHPLC’s require shorter lengths of 100 or 125 µm vs. 175 µm connector tubing, smaller detector fl ow cells, often less than 1 µL, and smaller injection volumes. In UHPLC such small particles require very high pressure pumps,


Figure 1. Two superimposed injections of caffeine on a 3x20 mm, 1.8 µm RX-Sil column at 1.75 mL/min of 7.5% methanol at 30 °C, 100 bar. The average reduced plate height was 1.65. Average plates were 7099.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68