16 August / September 2019 References
1. L. Akbal, G. Hopfgartner, J Chromatogr A. 2017 Sep 29; 1517:176-184.
DOI: 10.1016/
j.chroma.2017.08.044. Epub 2017 Aug 19
2. V. Desfontaine, F. Capetti, R. Nicoli, T. Kuuranne, J. L. Veuthey, D. Guillarme, Journal of Chromatography B 1079 February 2018. DOI: 10.1016/j.jchromb.2018.01.037
Table 1: Comparison of % RSD for retention and peak area of Reserpine using split and no-split design inter- face for SFC-MS hyphenation.
area in the given example, values were found to be significantly lower in the no-split approach (Table 1).
Sensitivities
Observing that in SFC mostly gaseous CO2 and varying portions of organic modifier
are introduced into the ESI source, higher ionisation efficiency and therefore higher sensitivity can be expected due to highly efficient evaporation compared to LC with a high water content in the mobile phase. Another advantage of SFC is the possibility of using a make-up solvent to increase ionisation efficiency and possibly also spray stability, if not enough solvent is introduced with the mobile phase flow. It was found that 0.1 - 0.2 mL/min of total flow introduced into the MS was suitable for obtaining a stable spray with good sensitivity and repeatability [7].
Optimisation
With the make-up flow being introduced behind the column, it can be used to optimise ionisation efficiency without affecting chromatography. Also, pH stability of the column doesn’t have to be considered in the choice of the optimum make-up solvent [1]. In a careful evaluation of MS interface parameters, it was found that unlike LC-MS where low capillary voltage gave higher peak intensity, high capillary voltage was preferable in SFC-MS. This was attributed to the high water content in LC, which is not present in SFC mobile phases [7]. It showed that MS parameters also need to be carefully optimised in order to get the most out of the technique.
After optimisation, 395 out of 442 pesticides showed better sensitivity in SFC-MS compared to LC-MS [7], which agrees with other published data [8, 11]. Matrix effects were also investigated, and in the matrices
studied (food samples) signal suppression due to co-elution of interfering matrix components was reduced significantly compared to results obtained by LC- MS, most likely due to the differences in retention. In a more in-depth study, Desfontaine et al. reported the advantage of SFC-MS over LC-MS with regards to matrix interference for the analysis of basic compounds in biological matrices. They also attributed the reduced occurrence of matrix effects in SFC-MS to an advantage in the alternate elution profile, therefore depending on the choice of separation column. In addition, it was suggested that differences in the properties of the mobile phase could lead to differences in ionisation efficiency and matrix effects [2].
Conclusion
In recent studies, SFC-MS could be established as a reliable, robust and beneficial alternative to routine LC-MS methodology, and new generation SFC-MS instrumentation prove to be very similar to LC-MS systems with regard to ease-of-use and application development.
However, retention mechanisms are not as well defined in SFC-MS as they are in LC-MS, making the method development process more empirical. Method development can still be performed quickly and efficiently using the method scouting approach. After proper optimisation, SFC-MS can offer considerable advantages in terms of separation selectivity and MS sensitivity.
SFC-MS and LC-MS should be considered as complementary techniques due to the differences in separation patterns as well as detection sensitivity, since not all compounds show higher signals when analysed by SFC.
3. L. T. Taylor, Anal. Chem. 82 (12) 4925–4935 (2010)] DOI: 10.1021/ac101194x
4. N. Gibitz Eisath, S. Sturm, H. Stuppner, Planta Med 2018; 84(06/07): 361-371
DOI: 10.1055/s-0037-1599461
5. A. Dispas, R. Marini, V. Desfontaine, J. L. Veuthey, D. Kotoni, L. G. Losacco, A. Clarke, C. Muscat Galea, D. Mangelings, B. M. Jocher, E. L. Regalado, K. Plachká, L. Nováková, B. Wuyts, I. François, M. Gray, A. J. Aubin, A. Tarafder, M. Cazes, C. Desvignes, L. Villemet, M. Sarrut, A. Raimbault, E. Lemasson, E. Lesellier, C. West, T. Leek, M. Wong, L. Dai, K. Zhang, A. Grand-Guillaume Perrenoud, C. Brunelli, P. Hennig, S. Bertin, F. Mauge, N. Da Costa, W. Farrell, M. Hill, N. Desphande, M. Grangrade, S. Sadaphule, R. Yadav, S. Rane, S. Shringare, M. Iguiniz, S. Heinisch, J. Lefevre, E. Corbel, N. Roques, Y. V. Heyden, D. Guillarme, P. Hubert, J Pharm Biomed Anal. 2018 Nov 30;161:414-424 DOI: 10.1016/j. jpba.2018.08.042. Epub 2018 Aug 23.
6. I. Brondz, A. Brondz, International Journal of Analytical Mass Spectrometry and Chromatography, 2014, 2, 15-24 DOI: 10.4236/ijamsc.20
14.21002
7. Y. Fujito, Y. Hayakawa, Y. Izumi, T. Bamba, J. Chromatogr. A 1508 (2017) 138–147 DOI: 10.1016/
j.chroma.2017.05.071. Epub 2017 Jun 2
8. V. Cutillas, M. M. Galera, L. Rajski, A. R. Fernández-Alba, J Chromatogr. A. 2018 Apr 13;1545:67-74 DOI: 10.1016/j. chroma.2018.02.048. Epub 2018 Feb 23
9. E. Lesellier, C. West, J Chromatogr. A. 2015 Feb 20;1382:2-46.
DOI: 10.1016/
j.chroma.2014.12.083. Epub 2015 Jan 10
10. D. Guillarme, V. Desfontaine, S. Heinisch, J. L. Veuthey, J. Chromatogr. B, 1083, (2018) 160-170 DOI: 10.1016/j.jchromb.2018.03.010
11. V. Cutillas, M. Murcia-Morales, M. M. Gómez-Ramos, S. M. Taha and A. R. Fernández-Alba, Analytica Chimica Acta, Volume 1059, 20 June 2019, Pages 124-135 DOI: 10.1016/
j.aca.2019.01.010
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68